open Lacaml.D type t = { mo_basis : MOBasis.t ; aux_basis : MOBasis.t ; det_space : DeterminantSpace.t ; ci : CI.t ; eigensystem : (Mat.t * Vec.t) lazy_t; } let ci t = t.ci let mo_basis t = t.mo_basis let det_space t = t.det_space let mo_class t = DeterminantSpace.mo_class @@ det_space t let eigensystem t = Lazy.force t.eigensystem let f12_integrals mo_basis = let two_e_ints = MOBasis.f12_ints mo_basis in ( (fun _ _ _ -> 0.), (fun i j k l s s' -> if (i=k && j<>l) || (j=l && i<>k) then 0. else begin if s' = Spin.other s then 0.5 *. (F12.get_phys two_e_ints i j k l) else 0.25 *. ((F12.get_phys two_e_ints i j k l) -. (F12.get_phys two_e_ints i j l k)) end ) ) let h_ij mo_basis ki kj = let integrals = List.map (fun f -> f mo_basis) [ CI.h_integrals ] in CIMatrixElement.make integrals ki kj |> List.hd let hf_ij mo_basis ki kj = let integrals = List.map (fun f -> f mo_basis) [ CI.h_integrals ; f12_integrals ] in CIMatrixElement.make integrals ki kj let f_ij mo_basis ki kj = let integrals = List.map (fun f -> f mo_basis) [ f12_integrals ] in CIMatrixElement.make integrals ki kj |> List.hd let is_internal det_space = let mo_class = DeterminantSpace.mo_class det_space in let mo_num = Array.length @@ MOClass.mo_class_array mo_class in let m l = List.fold_left (fun accu i -> let j = i-1 in Bitstring.logor accu (Bitstring.shift_left_one mo_num j) ) (Bitstring.zero mo_num) l in let aux_mask = m (MOClass.auxiliary_mos mo_class) in fun a -> let alfa = Determinant.alfa a |> Spindeterminant.bitstring in let beta = Determinant.beta a |> Spindeterminant.bitstring in let a = Bitstring.logand aux_mask alfa and b = Bitstring.logand aux_mask beta in match Bitstring.popcount a + Bitstring.popcount b with | 1 | 2 -> false | _ -> true let dressing_vector ~frozen_core aux_basis f12_amplitudes ci = if Parallel.master then Printf.printf "Building matrix\n%!"; (* Determinants of the FCI space as a list *) let in_dets = DeterminantSpace.determinant_stream ci.CI.det_space |> Util.stream_to_list in (* Stream that generates only singly and doubly excited determinants wrt FCI space *) let out_dets_stream = (* Stream that generates all determinants of FCI space *) let s = DeterminantSpace.fci_of_mo_basis ~frozen_core aux_basis |> DeterminantSpace.determinant_stream in (* Select only singly and doubly excited determinants wrt FCI space *) Stream.from (fun _ -> try let rec result () = let ki = Stream.next s in if is_internal ci.CI.det_space ki then result () else Some ki in result () with Stream.Failure -> None ) in let make_h_and_f alpha_list = let rec col_vecs_list accu_H accu_F = function | [] -> List.rev accu_H, List.rev accu_F | ki :: rest -> let h, f = List.map (fun kj -> match hf_ij aux_basis ki kj with | [ a ; b ] -> a, b | _ -> assert false ) in_dets |> List.split in let h = Vec.of_list h and f = Vec.of_list f in col_vecs_list (h::accu_H) (f::accu_F) rest in let h, f = col_vecs_list [] [] alpha_list in Mat.of_col_vecs_list h, Mat.of_col_vecs_list f in let m_HF = let batch_size = 1 + 1_000_000 / (Mat.dim1 f12_amplitudes) in let input_stream = Stream.from (fun i -> let rec make_batch accu = function | 0 -> accu | n -> try let alpha = Stream.next out_dets_stream in let accu = alpha :: accu in make_batch accu (n-1) with Stream.Failure -> accu in let result = make_batch [] batch_size in if result = [] then None else Some result ) in let result = let m_H_aux, m_F_aux = make_h_and_f [(Stream.next out_dets_stream)] in let m_HF = gemm m_H_aux m_F_aux ~transb:`T in gemm m_HF f12_amplitudes in let iteration input = Printf.printf ".%!"; let m_H_aux, m_F_aux = make_h_and_f input in let m_HF = gemm m_H_aux m_F_aux ~transb:`T in gemm m_HF f12_amplitudes in input_stream |> Farm.run ~ordered:false ~f:iteration |> Stream.iter (fun hf -> ignore @@ Mat.add result hf ~c:result ); Printf.printf "\n"; Parallel.broadcast (lazy result) in Printf.printf "Done\n%!"; Matrix.dense_of_mat m_HF let make ~simulation ?(threshold=1.e-12) ~frozen_core ~mo_basis ~aux_basis_filename () = let f12 = Util.of_some @@ Simulation.f12 simulation in let mo_num = MOBasis.size mo_basis in Printf.printf "Add aux basis\n%!"; (* Add auxiliary basis set *) let s = let charge = Charge.to_int @@ Simulation.charge simulation and multiplicity = Electrons.multiplicity @@ Simulation.electrons simulation and nuclei = Simulation.nuclei simulation in let general_basis = Basis.general_basis @@ Simulation.basis simulation in GeneralBasis.combine [ general_basis ; GeneralBasis.read aux_basis_filename ] |> Basis.of_nuclei_and_general_basis nuclei |> Simulation.make ~f12 ~charge ~multiplicity ~nuclei in let aux_basis = MOBasis.of_mo_basis s mo_basis in let () = Printf.printf "F12 ints\n%!"; ignore @@ MOBasis.f12_ints aux_basis in let () = Printf.printf "2e ints\n%!"; ignore @@ MOBasis.two_e_ints aux_basis in Printf.printf "det space\n%!"; let det_space = DeterminantSpace.fci_f12_of_mo_basis aux_basis ~frozen_core mo_num in let ci = CI.make det_space in let ci_coef, ci_energy = let x = Lazy.force ci.eigensystem in Parallel.broadcast (lazy x) in let e_shift = let det = DeterminantSpace.determinant_stream det_space |> Stream.next in h_ij aux_basis det det in let eigensystem = lazy ( let m_H = Lazy.force ci.CI.m_H in let rec iteration ?(state=1) psi = let delta = dressing_vector ~frozen_core aux_basis psi ci in let f = 1.0 /. psi.{1,1} in let delta_00 = Util.list_range 2 (Mat.dim1 psi) |> List.fold_left (fun accu i -> accu +. (Matrix.get delta i 1) *. psi.{i,1} *. f) 0. in let delta = Matrix.to_mat delta in delta.{1,1} <- delta.{1,1} -. delta_00; (*------ TODO SINGLE STATE HERE *) let n_states = ci.CI.n_states in let diagonal = Vec.init (Matrix.dim1 m_H) (fun i -> if i = 1 then Matrix.get m_H i i +. delta.{1,1} *. f else Matrix.get m_H i i ) in let matrix_prod c = let w = Matrix.mm ~transa:`T m_H c |> Matrix.to_mat in let c11 = Matrix.get c 1 1 in Util.list_range 1 (Mat.dim1 w) |> List.iter (fun i -> let dci = delta.{i,1} *. f ; in w.{i,1} <- w.{i,1} +. dci *. c11; if (i <> 1) then w.{1,1} <- w.{1,1} +. dci *. (Matrix.get c i 1); ); Matrix.dense_of_mat w in let eigenvectors, eigenvalues = Parallel.broadcast (lazy ( Davidson.make ~threshold:1.e-6 ~guess:psi ~n_states diagonal matrix_prod )) in let conv = 1.0 -. abs_float ( dot (Mat.to_col_vecs psi).(0) (Mat.to_col_vecs eigenvectors).(0) ) in if Parallel.master then Printf.printf "F12 Convergence : %e %f\n" conv (eigenvalues.{1} +. e_shift +. Simulation.nuclear_repulsion simulation); if conv > threshold then iteration eigenvectors else let eigenvalues = Vec.map (fun x -> x +. e_shift) eigenvalues in eigenvectors, eigenvalues in iteration ci_coef ) in { mo_basis ; aux_basis ; det_space ; ci ; eigensystem }