(* Algorithme de localisation des orbitales *) (* SOMMAIRE *) (* 0. Paramètres du calcul *) (* I. Définition des types *) (* II : Définition des fonctions pour la localisation *) (* 1. Définitions de base nécessaire pour la suite *) (* 2. Fonction de calcul de la matrice des angles selon la méthode de Edminston *) (* 3. Fonction calcul de la matrice des angles selon la méthode de Boys façon Edminston = NON FONCTIONNELLE *) (* 4. Fonction de calcul de la matrice des angles selon la méthode de Boys *) (* 5. Pattern matching : calcul de alpha et du critere D *) (* 6. Norme d'une matrice *) (* 7. Détermination de alpha_max et ses indices i et j. Si alpha max > pi/2 on soustrait pi/2 à la matrice des alphas de manière récursive Si alpha max < pi/2 on ajoute pi/2 à la matrice des alphas de manière récursive *) (* 8. Matrice de rotation 2 par 2 *) (* 9. Matrice de rotation n par n avec un angle fixe *) (* 10. Fonction d'extraction des 2 vecteurs propres i et j de la matrice des OMs pour les mettres dans la matrice Ksi (n par 2) pour appliquer R afin d'effectuer la rotation des orbitales *) (* {1,2} -> 1ere ligne, 2e colonne *) (* 11. Fonction de calcul de ksi~ (matrice n par 2), nouvelle matrice par application de la matrice de rotation dans laquelle on obtient les deux orbitales que l'on va réinjecter dans la matrice Phi*) (* 12. Fonction pour la création de matrice intermédiaire pour supprimer i j et ajouter i~ et j~ *) (* 13. Matrice intérmédiaire où les orbitales i et j ont été supprimées et remplacées par des 0, par soustraction de la matrice Phi par la matrice *) (* III. Localisation des OMs *) (* 1. Boucle de calcul de la nouvelle matrice des coefficient après n rotation d'orbitales *) (* 2. Fonction de localisation *) (* IV : Fonctions pour la séparation et le rassemblement des matrices *) (* 1. Fonction de création d'une liste d'entier à partir d'un vecteur de float*) (* 2. Fonction créant une liste à partir des éléments manquant d'une autre liste, dans l'intervalle [1 ; n_mo] *) (* 3. Fonction de séparation d'une matrice en 2 sous matrice, la première matrice correspondant aux colonnes de la matrice dont le numéro est présent dans la liste et la seconde à celles dont le numéro de colonne n'est pas présent dans la liste *) (* 4. Liste des OMs occupées *) (* 5. Liste des OMs de coeur *) (* 6. Fonction de creation d'une liste des OMs pi virtuelles *) (* 7. Fonction de rassemblement de 2 matrices *) (* V. Calcul *) (* 1. Séparation des OMs -> m_occ : OMs occupées; m_vir : OMs vacantes *) (* 1.1 Liste des OMs pi virtuelles *) (* 2. Application d'une légère rotation d'un angle fixé aux OMs pour améliorer la convergence *) (* 3. Légende *) (* 4. Rotation des orbitales : localise localisation new_X / "methode" / epsilon = 1. si <1 diminue l'angle des rotations / nb itération / critère de convergence *) (* 4.1 Fonction de localisation de toutes les orbitales virtuelles sans separation *) (* 4.2 Fonction de localisation en separant les orbitales pi et sigma *) (* 4.3 Fonction de localisation en separant les orbitales pi et sigma et les 10 dernières sigma *) (* 4.4 Fonction séparant les orbitales pi, la premiere et la seconde moitié des orbitales sigma *) (* 5. Rassemblement des occupées et des virtuelles *) (* 5.1 Rassemblement des orbitales occupées (coeur et non coeur) *) (* 5.2 Pattern matching du type de separation des orbitales virtuelles et rassemblement des orbitales occupées et virtuelles *) (* VI. Analyse *) (* 1. Fonction de calcul de l'extension spatiale des orbitales *) (* 2. Fonction de tri par ordre croissant d'une liste *) (* 3. Fonction de tri par ordre croissant de l'extension spatiale des orbitales *) (* 4. Moyenne/variance/ecart-type/mediane de l'extension spatiale des orbitales *) (* 5. Fonction d'affichage *) let methode = "Boys_er";; (* Method for th orbitals localization *) let iteration = 10000;; (* Maximum number of iteration for each localization *) let cc = 10e-6;; (* Convergence criterion *) let pre_angle = 0.001;; (* Rotation of the matrix with a small angle to improve the convergence *) let epsilon = 1.;; (* Rotation angle = angle /. epsilon, default value : epsilon = 1. *) let x_end = 1;; (* Choice of the x_end for the pi/sigma/end separation, size of the second matrix with the sigma orbitals *) (* !!! WARNING : even if you don't use this localization method, 0 < x_end < total number of sigma orbitals. If you don't use this method, use the default value, x_end = 1 WARNING !!! *) (* Choice of the separation type of orbitals *) (* For valence ones *) let type_separation_occu = "pi/sigma";; (* Separation of the pi and sigma orbitals *) (*let type_separation_occu = "1/2";;*) (* Separation of the first and second half of the orbitals *) (*let type_separation_occu = "pi/sigma/end";;*) (* Separation pi,(n-x_end) sigma and x_end sigma *) (*let type_separation_occu = "pi/1/2";;*) (* Separation pi, (n/2) first sigma and (n/2) last sigma *) (*let type_separation_occu = "full";;*) (* Without separation *) (* For occupied ones *) let type_separation_vir = "pi/sigma";; (* Separation of the pi and sigma orbitals *) (*let type_separation_vir = "1/2";;*) (* Separation of the first and second half of the orbitals *) (*let type_separation_vir = "pi/sigma/end";;*) (* Separation pi,(n-x_end) sigma and x_end sigma *) (*let type_separation_vir = "pi/1/2";;*) (* Separation pi, (n/2) first sigma and (n/2) last sigma *) (*let type_separation_vir = "full";;*) (* Without separation *) open Lacaml.D (* I. Types definitions *) type alphaij = { alpha_max : float; indice_ii : int; indice_jj : int; } type alphad = { m_alpha : Mat.t; d : float; } let localize mo_basis = let simulation = MOBasis.simulation mo_basis in let nocc = let elec = Simulation.electrons simulation in Electrons.n_alfa elec in let ao_basis = MOBasis.ao_basis mo_basis in let n_core = (Nuclei.small_core @@ Simulation.nuclei @@ MOBasis.simulation mo_basis) / 2 in let charge = Simulation.charge simulation |>Charge.to_int in (* II : Definition of the fonctions for the localization *) (* 1. Basic definitions *) let m_C = MOBasis.mo_coef mo_basis in let n_ao = Mat.dim1 m_C in let pi = acos(-1.) in (* 2. Function for Edminston-Ruedenberg localization*) (* Coefficient matrix n_ao x n_mo -> n_mo x n_mo matrix with angle(rad) between orbitals, Edminston localization criterion *) (* matrix -> matrix, float *) let f_alpha_er m_C = let ee_ints = AOBasis.ee_ints ao_basis in let n_mo = Mat.dim2 m_C in let m_b12 = Mat.init_cols n_mo n_mo (fun i j -> 0.) in let m_a12 = Mat.init_cols n_mo n_mo (fun i j -> 0.) in let v_d = Vec.init n_mo (fun i -> 0.) in (* Tableaux temporaires *) let m_pqr = Bigarray.(Array3.create Float64 fortran_layout n_ao n_ao n_ao) in let m_qr_i = Mat.create (n_ao*n_ao) n_mo in let m_ri_j = Mat.create (n_ao*n_mo) n_mo in let m_ij_k = Mat.create (n_mo*n_mo) n_mo in Array.iter (fun s -> (* Grosse boucle externe sur s *) Array.iter (fun r -> Array.iter (fun q -> Array.iter (fun p -> m_pqr.{p,q,r} <- ERI.get_phys ee_ints p q r s ) (Util.array_range 1 n_ao) ) (Util.array_range 1 n_ao) ) (Util.array_range 1 n_ao); (* Conversion d'un tableau a 3 indices en une matrice nao x nao^2 *) let m_p_qr = Bigarray.reshape (Bigarray.genarray_of_array3 m_pqr) [| n_ao ; n_ao*n_ao |] |> Bigarray.array2_of_genarray in let m_qr_i = (* (qr,i) = = \sum_p
C_{pi} *) gemm ~transa:`T ~c:m_qr_i m_p_qr m_C in let m_q_ri = (* Transformation de la matrice (qr,i) en (q,ri) *) Bigarray.reshape_2 (Bigarray.genarray_of_array2 m_qr_i) n_ao (n_ao*n_mo) in let m_ri_j = (* (ri,j) = = \sum_q C_{bj} *) gemm ~transa:`T ~c:m_ri_j m_q_ri m_C in let m_r_ij = (* Transformation de la matrice (ri,j) en (r,ij) *) Bigarray.reshape_2 (Bigarray.genarray_of_array2 m_ri_j) n_ao (n_mo*n_mo) in let m_ij_k = (* (ij,k) = = \sum_r C_{rk} *) gemm ~transa:`T ~c:m_ij_k m_r_ij m_C in let m_ijk = (* Transformation de la matrice (ei,j) en (e,ij) *) Bigarray.reshape (Bigarray.genarray_of_array2 m_ij_k) [| n_mo ; n_mo ; n_mo |] |> Bigarray.array3_of_genarray in Array.iter (fun j -> Array.iter (fun i -> m_b12.{i,j} <- m_b12.{i,j} +. m_C.{s,j} *. (m_ijk.{i,i,i} -. m_ijk.{j,i,j}); m_a12.{i,j} <- m_a12.{i,j} +. m_ijk.{i,i,j} *. m_C.{s,j} -. 0.25 *. ( (m_ijk.{i,i,i} -. m_ijk.{j,i,j}) *. m_C.{s,i} +. (m_ijk.{j,j,j} -. m_ijk.{i,j,i}) *. m_C.{s,j}) ) (Util.array_range 1 n_mo); v_d.{j} <- v_d.{j} +. m_ijk.{j,j,j} *. m_C.{s,j} ) (Util.array_range 1 n_mo) ) (Util.array_range 1 n_ao); (Mat.init_cols n_mo n_mo ( fun i j -> if i= j then 0. else if asin( m_b12.{i,j} /. sqrt(m_b12.{i,j}**2. +. m_a12.{i,j}**2.)) > 0. then 0.25 *. acos( -. m_a12.{i,j} /. sqrt(m_b12.{i,j}**2. +. m_a12.{i,j}**2.)) else -. 0.25 *. acos( -. m_a12.{i,j} /. sqrt(m_b12.{i,j}**2. +. m_a12.{i,j}**2.))) ,Vec.sum v_d) in (* 3. Function for the Boys localization like the Edminston-Ruedenberg localization *) (* Coefficient matrix n_ao x n_mo -> n_mo x n_mo matrix with angle between orbitals, localization Boys like ER criterion *) (* Matrix -> matrix, float *) let f_alpha_boys_er m_C = let multipoles = AOBasis.multipole ao_basis in let n_mo = Mat.dim2 m_C in let phi_x_phi = Multipole.matrix_x multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_y_phi = Multipole.matrix_y multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_z_phi = Multipole.matrix_z multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let m_b12= let b12 g = Mat.init_cols n_mo n_mo ( fun i j -> (g.{i,i} -. g.{j,j}) *. g.{i,j}) in Mat.add (b12 phi_x_phi) ( Mat.add (b12 phi_y_phi) (b12 phi_z_phi)) in let m_a12 = let a12 g = Mat.init_cols n_mo n_mo ( fun i j -> g.{i,j} *. g.{i,j} -. 0.25 *. ((g.{i,i} -. g.{j,j}) *. (g.{i,i} -. g.{j,j}))) in Mat.add (a12 phi_x_phi) ( Mat.add (a12 phi_y_phi) (a12 phi_z_phi)) in (Mat.init_cols n_mo n_mo ( fun i j -> if i=j then 0. else if +. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j} >= 0. then pi /. 4. -. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j} else -. pi /. 4. -. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j}) ,0.5 *. Vec.sum(Vec.init n_mo ( fun i -> (phi_x_phi.{i,i})**2. +. (phi_y_phi.{i,i})**2. +. (phi_z_phi.{i,i})**2.))) in (* 4. Function for the original Boys localization *) (* Coefficient matrix n_ao x n_mo -> (n_mo x n_mo matrix with angle between orbitals, localization criterion *) (* Matrix -> matrix, float *) let f_theta_boys m_C = let multipoles = AOBasis.multipole ao_basis in let n_mo = Mat.dim2 m_C in let phi_x_phi = Multipole.matrix_x multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_y_phi = Multipole.matrix_y multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_z_phi = Multipole.matrix_z multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_x2_phi = Multipole.matrix_x2 multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_y2_phi = Multipole.matrix_y2 multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_z2_phi = Multipole.matrix_z2 multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let m_b_0 = let b_0 g h = Mat.init_cols n_mo n_mo (fun i j -> h.{i,i} +. h.{j,j} -. (g.{i,i}**2. +. g.{j,j}**2.)) in Mat.add (b_0 phi_x_phi phi_x2_phi) (Mat.add (b_0 phi_y_phi phi_y2_phi) (b_0 phi_z_phi phi_z2_phi)) in let m_beta = let beta g = Mat.init_cols n_mo n_mo (fun i j -> (g.{i,i} -. g.{j,j})**2. -. 4. *. g.{i,j}**2.) in Mat.add (beta phi_x_phi) (Mat.add (beta phi_y_phi) (beta phi_z_phi)) in let m_gamma = let gamma g = Mat.init_cols n_mo n_mo (fun i j -> 4. *. g.{i,j} *. (g.{i,i} -. g.{j,j}) ) in Mat.add (gamma phi_x_phi) (Mat.add (gamma phi_y_phi) (gamma phi_z_phi)) in let m_theta = Mat.init_cols n_mo n_mo (fun i j -> if i = j then 0. else +. 0.25 *. atan2 m_gamma.{i,j} m_beta.{i,j}) in let m_critere_B = Mat.init_cols n_mo n_mo (fun i j -> 0.5 *. (m_b_0.{i,j} +. 0.25 *. ((1. -. cos(4. *. m_theta.{i,j})) *. m_beta.{i,j} +. sin(4. *. m_theta.{i,j}) *. m_gamma.{i,j}))) in m_theta, Vec.sum(Mat.as_vec m_critere_B) in (* Function to compute the new angle after rotation between the 2 orbitals j1 and j2, by the Boys like ER localization *) (* n_mo x n_mo matrix with angle between orbitals, index of the orbital j1, index of the orbital j2 -> n_mo x 2 matrix with the new angles between j1 and j2, new localization criterion *) (* matrix, integer, integer -> matrix, float *) let f2_alpha_boys_er m_C j1 j2= let multipoles = AOBasis.multipole ao_basis in let n_mo = Mat.dim2 m_C in let phi_x_phi = Multipole.matrix_x multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_y_phi = Multipole.matrix_y multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_z_phi = Multipole.matrix_z multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let m_b12= let b12 g = Mat.init_cols n_mo 2 ( fun i j -> if j = 1 then (g.{i,i} -. g.{j1,j1}) *. g.{i,j1} else (g.{i,i} -. g.{j2,j2}) *. g.{i,j2}) in Mat.add (b12 phi_x_phi) ( Mat.add (b12 phi_y_phi) (b12 phi_z_phi)) in let m_a12 = let a12 g = Mat.init_cols n_mo 2 ( fun i j -> if j = 1 then g.{i,j1} *. g.{i,j1} -. 0.25 *. ((g.{i,i} -. g.{j1,j1}) *. (g.{i,i} -. g.{j1,j1})) else g.{i,j2} *. g.{i,j2} -. 0.25 *. ((g.{i,i} -. g.{j2,j2}) *. (g.{i,i} -. g.{j2,j2}))) in Mat.add (a12 phi_x_phi) ( Mat.add (a12 phi_y_phi) (a12 phi_z_phi)) in (Mat.init_cols n_mo 2 ( fun i j -> if i=j1 && j=1 then 0. else if i = j2 && j=2 then 0. else if +. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j} >= 0. then pi /. 4. -. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j} else -. pi /. 4. -. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j}), Vec.sum(Vec.init n_mo ( fun i -> (phi_x_phi.{i,i})**2. +. (phi_y_phi.{i,i})**2. +. (phi_z_phi.{i,i})**2.))) in (* Function to compute the new angle after rotation between the 2 orbitals j1 and j2, by the Boys localization *) (* n_mo x n_mo matrix with angles between orbitals, index of the orbital j1, index of the orbital j2 -> n_mo x 2 matrix with the new angles between j1 and j2, new localization criterion *) (* matrix, integer, integer -> matrix, float *) let f2_theta_boys m_C j1 j2 = let multipoles = AOBasis.multipole ao_basis in let n_mo = Mat.dim2 m_C in let phi_x_phi = Multipole.matrix_x multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_y_phi = Multipole.matrix_y multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_z_phi = Multipole.matrix_z multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_x2_phi = Multipole.matrix_x2 multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_y2_phi = Multipole.matrix_y2 multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let phi_z2_phi = Multipole.matrix_z2 multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C in let m_beta = let beta g = Mat.init_cols n_mo 2 (fun i j -> if j = 1 then (g.{i,i} -. g.{j1,j1})**2. -. 4. *. g.{i,j1}**2. else (g.{i,i} -. g.{j2,j2})**2. -. 4. *. g.{i,j2}**2.) in Mat.add (beta phi_x_phi) (Mat.add (beta phi_y_phi) (beta phi_z_phi)) in let m_gamma = let gamma g = Mat.init_cols n_mo 2 (fun i j -> if j = 1 then 4. *. g.{i,j1} *. (g.{i,i} -. g.{j1,j1}) else 4. *. g.{i,j2} *. (g.{i,i} -. g.{j2,j2})) in Mat.add (gamma phi_x_phi) (Mat.add (gamma phi_y_phi) (gamma phi_z_phi)) in let m_theta = Mat.init_cols n_mo 2 (fun i j -> if i=j1 && j=1 then 0. else if i = j2 && j=2 then 0. else +. 0.25 *. atan2 m_gamma.{i,j} m_beta.{i,j}) in let m_critere_B = Vec.init n_mo (fun i -> phi_x2_phi.{i,i} -. phi_x_phi.{i,i}**2. +. phi_y2_phi.{i,i} -. phi_y_phi.{i,i}**2. +. phi_z2_phi.{i,i} -. phi_z_phi.{i,i}**2.) in m_theta, Vec.sum( m_critere_B) in (* 5. Pattern matching : choice of the localization method *) (* The method, coefficient matrix n_ao x n_mo -> n_mo x n_mo matrix with the angle between orbitals using previous function, localization criterion *) (* string, matrix -> matrix, float *) let m_alpha_d methode m_C = let alpha methode = match methode with | "Boys_er" | "BOYS_ER" | "boys_er" -> let alpha_boys , d_boys = f_alpha_boys_er m_C in {m_alpha = alpha_boys; d = d_boys} | "Boys" | "boys" | "BOYS" -> let theta_boys, b_boys = f_theta_boys m_C in {m_alpha = theta_boys; d = b_boys} | "ER" | "er" -> let alpha_er , d_er = f_alpha_er m_C in {m_alpha = alpha_er; d = d_er} | _ -> invalid_arg "Unknown method, please enter Boys or ER" in alpha methode in (* 5. Pattern matching : choice of the localization method to compute the n_mo x 2 new angles and not the n_mo x n_mo angles, after the rotation of i and j orbitals *) (* The method, coefficient matrix n_ao x n_mo, index of the orbital i , index of the orbital j -> n_mo x 2 matrix with the new angle between orbitals i and j using previous function, new localization criterion *) (* string, matrix, integer, integer -> matrix, float *) let f_speed_alpha methode m_C indice_i indice_j = let alpha_speed methode = match methode with | "Boys_er" | "boys_er" -> let m_alpha, critere_D = f2_alpha_boys_er m_C indice_i indice_j in {m_alpha = m_alpha; d = critere_D} | "BOYS" -> let m_alpha, critere_D = f2_theta_boys m_C indice_i indice_j in {m_alpha = m_alpha; d = critere_D} | _ -> invalid_arg "Unknown method, please enter Boys or ER" in alpha_speed methode in (* 6. Norm of a matrix *) (* Matrix -> float *) let norm m = let vec_m = Mat.as_vec m in let vec2 = Vec.sqr vec_m in sqrt(Vec.sum vec2) in (* 7. Calculation of the max angle[-pi/.4 , pi/.4] and its indexes i and j in the matrix *) (* n_mo x n_mo matrix with angles between orbitals, coefficient matrix n_ao x n_mo, max number of iteration -> max angle, line location, column location *) (* matrix, matrix, integer -> float, integer, integer *) let rec new_m_alpha m_alpha m_C n_rec_alpha= let n_mo = Mat.dim2 m_C in let alpha_m = if n_rec_alpha == 0 then m_alpha else Mat.init_cols n_mo n_mo (fun i j -> if (m_alpha.{i,j}) >= (pi /. 2.) then (m_alpha.{i,j} -. ( pi /. 2.)) else if m_alpha.{i,j} <= -. pi /. 2. then (m_alpha.{i,j} +. ( pi /. 2.)) else m_alpha.{i,j} ) in (* Location of the max angle in the matrix *) (* angle matrix -> location of the max element *) (* matrix -> integer *) let max_element alpha_m = Mat.as_vec alpha_m |> iamax in (* Indexes i and j of the max angle *) (* -> integer, integer *) let indice_ii, indice_jj = let max = max_element alpha_m in (max - 1) mod n_mo +1, (max - 1) / n_mo +1 in (* Value of the max angle *) (* angle matrix -> value of the max angle*) (* matrix -> float *) let alpha alpha_m = let i = indice_ii in let j = indice_jj in alpha_m.{i,j} in let alpha_max = alpha alpha_m in if alpha_max < pi /. 2. then {alpha_max; indice_ii; indice_jj} else new_m_alpha alpha_m m_C (n_rec_alpha-1) in (* 8. Rotation matrix 2x2 *) (* angle -> 2x2 rotation matrix *) (* float -> matrix *) let f_R alpha = Mat.init_cols 2 2 (fun i j -> if i=j then cos alpha else if i>j then sin alpha else -. sin alpha ) in (* 9. Rotation matrix nxn *) (* Coefficient matrix n_ao x n_mo, angle -> new coefficient matrix n_ao x n_mo after a rotation with a small angle *) (* matrix, float -> matrix *) let rotate m_C angle= let n_mo = Mat.dim2 m_C in (* Antisymmetrization of the matrix and diagonal terms = 0, X *) (* angle -> Antisymmetric matrix with this angle and diagonal terms = 0 *) (* float -> matrix *) let m_angle angle= Mat.init_cols n_mo n_mo (fun i j -> if i = j then 0. else if i>j then -. angle else angle) in let m = m_angle angle in (* Square of the matrix X² *) (* -> X . X *) (* -> matrix*) let mm = gemm m m in (* Diagonalization of X² *) (* diag = vector that contains the eigenvalues (-tau²), mm contains the eigenvectors (W) *) (* -> vector *) let diag = syev ~vectors:true mm in (* -tau² to tau² *) (* -> vector that contains the eigenvalues (tau²) *) (* -> vector *) let square_tau= Vec.abs diag in (* tau² to tau *) (* -> vector that contains the eigenvalues tau *) (* -> vector *) let tau = Vec.sqrt square_tau in (* Calculation of cos tau from the vector tau *) (* -> cos(tau) *) (* -> integer *) let cos_tau = Vec.cos tau in (* Matrix cos tau *) (* -> matrix with diagonal terms cos(tau) and 0 also *) (* -> matrix *) let m_cos_tau = Mat.init_cols n_mo n_mo (fun i j -> if i=j then cos_tau.{i} else 0.) in (* Calcul of sin(tau) from the vector tau *) let sin_tau = Vec.sin tau in (* Matrix sin tau *) (* -> matrix with diagonal terms sin(tau) and 0 also *) (* -> matrix *) let m_sin_tau = Mat.init_cols n_mo n_mo (fun i j -> if i=j then sin_tau.{i} else 0.) in (* Calculation of the transposed matrix of W (X²) *) (* -> transposed matrix of W *) (* -> matrix *) let transpose_mm = Mat.transpose_copy mm in (* Calculation of the vector tau^-1 *) (* -> vector tau^-1 *) (* -> vector *) let tau_1 = Vec.init n_mo (fun i -> if tau.{i}<= 0.001 then 1. else 1. /. tau.{i}) in (* Calculation of the matrix tau^⁻1 *) (* -> matrix tau^-1 *) (* -> matrix *) let m_tau_1 = Mat.init_cols n_mo n_mo (fun i j -> if i=j then tau_1.{i} else 0.) in (* gemm mm (gemm m_cos_tau transpose_mm) -> W cos(tau) Wt *) (* -> matrix *) let a = gemm mm (gemm m_cos_tau transpose_mm) in (* gemm mm (gemm m_tau_1 ( gemm m_sin_tau (gemm transpose_mm m))) -> W tau^-1 sin(tau) Wt X *) (* -> matrix *) let b = gemm mm (gemm m_tau_1 ( gemm m_sin_tau (gemm transpose_mm m))) in (* Sum of a + b -> Rotation matrix *) (* -> Rotation matrix *) (* -> matrix *) let m_r = Mat.add a b in gemm m_C m_r in (* Function to extract 2 vectors i and j in a matrix *) (* Coefficient matrix n_ao x n_mo, index of the orbital i, index of the orbital j -> n_mo x 2 matrix with the eigenvetors i and j*) (* matrix, integer, integer -> matrix *) let f_Ksi indice_i indice_j m_C = let n_ao = Mat.dim1 m_C in Mat.init_cols n_ao 2 (fun i j -> if j=1 then m_C.{i,indice_i} else m_C.{i,indice_j} ) in (* Function to apply a rotation with a 2x2 rotation matrix on a n_mo x 2 matrix that contains i and j *) (* 2x2 rotation matrix, n_mo x 2 eigenvetors(i and j) matrix -> n_mo x 2 new eigenvetors(i~ and j~) after rotation *) (* matrix, matrix -> matrix *) let f_Ksi_tilde m_R m_Ksi = gemm m_Ksi m_R in (* Function to create intermediate coefficient matrix in order to delete the i j orbitals and add i~ j~ in the coefficient matrix *) (* n_mo x 2 matrix with k and l orbitals, index of k, index of l, n_ao x n_mo matrix coefficient -> matrix where all terms are equal to 0 except the k and l columns that contain the eigenvetors k and l *) (* matrix, integer, integer, matrix -> matrix *) let f_k mat indice_i indice_j m_C = let n_mo = Mat.dim2 m_C in let n_ao = Mat.dim1 m_C in Mat.init_cols n_ao n_mo (fun i j -> if j=indice_i then mat.{i,1} else if j=indice_j then mat.{i,2} else 0.) in (* Function to create a intermediate angle matrix in order to delete all the previous angle between i and all the other orbitals, j and all the other orbitals. And add the new angles between these orbitals *) (* n_mo x 2 matrix with angles between k and all the other orbitals l and all the other orbitals, index of k, index of l, coefficent matrix n_ao x n_mo -> matrix where all terms are equal to 0 except the k and l lines and columns that contains the angles between the orbitals *) (* matrix, integer, integer, matrix -> matrix *) let f_k_angle mat indice_i indice_j m_C = let n_mo = Mat.dim2 m_C in Mat.init_cols n_mo n_mo (fun i j -> if j=indice_i then mat.{i,1} else if j=indice_j then mat.{i,2} else if i = indice_i then -. mat.{j,1} else if i = indice_j then -. mat.{j,2} else 0.) in (* Intermediate matrix where the i and j orbitals are equal to 0 *) (* Coefficient matrix n_ao x n_mo, matrix where terms are equal to 0 except the k and l columns that contain the eigenvetors k and l *) (* matrix, matrix -> matrix *) let f_interm m_C mat = Mat.sub m_C mat in (* Function to compute the new coefficient matrix after a rotation between 2 orbitals *) (* coefficient matrix n_ao x n_mo, angle matrix, parameter -> new coefficient matrix n_ao x n_mo *) let new_m_C m_C m_alpha epsilon = (* alphaij contains the max angle of the angle matrix and the indexes *) let n_rec_alpha = 10 in let alphaij = new_m_alpha m_alpha m_C n_rec_alpha in (* Value of the angle *) let alpha = (alphaij.alpha_max) *. epsilon in (* Localtion of the max angle *) let indice_i = alphaij.indice_ii in let indice_j = alphaij.indice_jj in (* Rotation matrix *) let m_R = f_R alpha in (* Matrix with i and j orbitals *) let m_Ksi = f_Ksi indice_i indice_j m_C in (* Matrix with the new i~ and j~ orbitals *) let m_Ksi_tilde = f_Ksi_tilde m_R m_Ksi in (* Matrix to delete the i and j orbitals in the coefficient matrix *) let m_Psi = f_k m_Ksi indice_i indice_j m_C in (* Matrix to add the i~ and j~ orbitals in the coefficient matrix *) let m_Psi_tilde = f_k m_Ksi_tilde indice_i indice_j m_C in (* Coefficient matrix without the i and j orbitals *) let m_interm = f_interm m_C m_Psi in (* Matrice after rotation, max angle, index i, index j *) (Mat.add m_Psi_tilde m_interm, alpha, indice_i, indice_j) in (* Function to compute the new angle matrix after one rotation between 2 orbitals *) (* Previous angle matrix n_mo x n_mo, new coefficient matrix n_ao x n_mo, previous angle matrix, index of the orbital i, index of the orbital j -> new angle matrix, new localization criterion *) (* matrix, matrix, matrix, integer, integer -> matrix, float *) let m_alpha m_new_m_C prev_m_alpha indice_i indice_j = (* n_mo x 2 matrix that contains the new angles between i,j with the other orbitals *) let speed_alphad = f_speed_alpha methode m_new_m_C indice_i indice_j in (* New localization criterion *) let critere_D = speed_alphad.d in (* Previous angles *) let ksi_angle = f_Ksi indice_i indice_j prev_m_alpha in (* New angles *) let ksi_angle_tilde = speed_alphad.m_alpha in (* Matrix to delete the previous angles *) let psi_angle = f_k_angle ksi_angle indice_i indice_j m_new_m_C in (* Matrix to add the new angles *) let psi_tilde_angle = f_k_angle ksi_angle_tilde indice_i indice_j m_new_m_C in (* Matrix without the angles between i, j and the orbitals *) let m_interm = f_interm prev_m_alpha psi_angle in (* New angle matrix, new localization criterion *) (Mat.add m_interm psi_tilde_angle, critere_D) in (* III. Localization *) (* Loop to compute the new coefficient matrix avec n orbital rotations *) (* Coefficeient matrix n_ao x n_mo, localization method, parameter, max number of iteration, previous localization criterion, previous angle matrix, convergence criterion -> new coefficient matrix after n orbital rotations *) (* matrix, string, float, integer, float, matrix, float -> matrix *) let rec localisation m_C methode epsilon n prev_critere_D prev_m_alpha cc = if n == 0 then m_C else (* New coefficient matrix after one rotation *) let m_new_m_C, alpha_max, indice_i, indice_j = new_m_C m_C prev_m_alpha epsilon in (* New angle matrix after one rotation *) let m_alpha, critere_D = m_alpha m_new_m_C prev_m_alpha indice_i indice_j in (* Matrix norm, angle average *) let norm_alpha = norm m_alpha in let moyenne_alpha = norm_alpha /. (float_of_int((Mat.dim1 m_C)* (Mat.dim2 m_C))) in let alpha = alpha_max /. epsilon in Printf.printf "%i %f %f %f %f\n%!" (iteration-n) critere_D alpha norm_alpha moyenne_alpha; (* Convergence criterion *) if alpha_max**2. < cc**2. then m_new_m_C else localisation m_new_m_C methode epsilon (n-1) critere_D m_alpha cc in (* 2. Localization function *) let localise localisation m_C methode epsilon n cc = let alphad = m_alpha_d methode m_C in let prev_m_alpha = alphad.m_alpha in let prev_critere_D = 0. in localisation m_C methode epsilon n prev_critere_D prev_m_alpha cc in (* IV : Functions to split and assemble matrix *) (* Function to create a integer list from a vector of float *) (* float vector -> integer list *) let int_list vec = let float_list = Vec.to_list vec in let g a = int_of_float(a) in List.map g float_list in (* Function to create a list from the missing elements of an other list*) (* Coefficient matrix n_ao x n_mo, list -> list of missing element of the previous list *) (* matrix, integer list -> integer list *) let miss_elem mat list = let n_mo = Mat.dim2 mat in let vec = Vec.init (n_mo) (fun i -> if List.mem i list then 0. else float_of_int(i)) in let list_int = int_list vec in List.filter (fun x -> x > 0) list_int in (* Function to split a matrix in 2 matrix, the first matrix corresponds to the column number whose number is in the list, the second matrix corresponds to the column which are not in the list *) (* Coefficient matrix n_ao x n_mo, list -> matrix, matrix *) (* matrix, integer list -> matrix, matrix*) let split_mat mat list = let vec_of_mat = Mat.to_col_vecs mat in let f a = vec_of_mat.(a-1) in let vec_list_1 = List.map f list in let list_2 = miss_elem mat list in let vec_list_2 = List.map f list_2 in (Mat.of_col_vecs_list vec_list_1,Mat.of_col_vecs_list vec_list_2) in (* Function to create a matrix from a list*) (* Coefficient matrix n_ao x n_mo, list of orbitals -> matrix with these orbitals *) (* matrix, integer list -> matrix*) let create_mat mat list = let vec_of_mat = Mat.to_col_vecs mat in let f a = vec_of_mat.(a-1) in let vec_list = List.map f list in Mat.of_col_vecs_list vec_list in (* List of the occupied MOs *) let list_occ = let vec_occ = Vec.init (nocc) (fun i -> float_of_int(i)) in int_list vec_occ in (* List of the core MOs *) let list_core = let vec_core = Vec.init (n_core) (fun i -> float_of_int(i)) in int_list vec_core in (* Function to create a list of pi MOs *) (* Coefficient matrix n_ao x n_mo -> list of pi orbitals *) (* matrix -> integer list *) let list_pi mat = let n_mo = Mat.dim2 mat in let m_pi = Mat.init_cols n_ao (n_mo+1) ( fun i j -> if j=1 && m_C.{i,j}**2. < 10e-8**2. then 0. else if j=1 then m_C.{i,j} else if mat.{i,j-1}**2. < 10e-8**2. then 0. else mat.{i,j-1}) in let vec = Mat.to_col_vecs m_pi in let vec_dot = Vec.init ((Mat.dim2 mat)) (fun i -> dot vec.(0) vec.(i)) in let vec_pi = Vec.init ((Mat.dim2 mat)) (fun i -> if vec_dot.{i} = 0. then float_of_int(i) else 0.) in let list_pi = int_list vec_pi in let rec remove x list = match list with | [] -> [] | var :: tail -> if var = x then remove x tail else var :: (remove x tail) in remove 0 list_pi in (* Function to create a list of the (n-x_end) first MOs of a matrix *) (* Coefficient matrix n_ao x n_mo -> list of the (n-x_end) first MOs of the matrix *) (* matrix -> integer list *) let list_x_end mat = let n = Mat.dim2 mat in let vec_x_end = Vec.init (n-x_end) (fun i -> float_of_int(i)) in int_list vec_x_end in (* Function to create a list of the (n/2) first MOs of a matrix *) (* Coefficient matrix n_ao x n_mo -> list of the (n/2) first MOs of the matrix *) (* matrix -> integer list *) let list_s_12 mat = let n = Mat.dim2 mat in let vec_12 = Vec.init (n/2) (fun i -> float_of_int(i)) in int_list vec_12 in (* Function to assemble to matrix with the same number of line *) (* Coefficient matrix n_ao x n, coefficient matrix n_ao x m -> Coefficient matrix n_ao x (n+m) *) (* matrix, matrix -> matrix*) let assemble mat_1 mat_2 = let v_mat_1 = Mat.to_col_vecs mat_1 in let v_mat_2 = Mat.to_col_vecs mat_2 in let m = Array.append v_mat_1 v_mat_2 in Mat.of_col_vecs m in (* V. Calculation *) (* 1. Caption *) let text = "Method : " ^ methode ^ "; Separation type of the valence occupied MOs : " ^ type_separation_occu ^ "; Separation type of the virtual MOs : " ^ type_separation_vir ^ "; Max number of iteration : " ^ string_of_int(iteration) ^ "; cc : " ^ string_of_float(cc)^"; epsilon : "^string_of_float(epsilon)^"; charge : "^string_of_int(charge)^"; Rotation pre angle : "^string_of_float(pre_angle) in let caption = "n Criterion max_angle norm_angle average_angle" in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Orbitals localization "; Printf.printf "%s\n" ""; Printf.printf "%s\n" text; Printf.printf "%s\n" ""; Printf.printf "%s\n" caption; Printf.printf "%s\n" ""; (* Separation of the occupied and virtual MOs, valence and core MOs *) let m_occ , m_vir = split_mat m_C list_occ in let m_core, m_occu = split_mat m_occ list_core in (* Localization function *) (* Coefficient matrix n_ao x n_mo -> localized coefficient matrix n_ao x n_mo *) (* matrix -> matrix *) let f_localise mat = if Mat.dim2 mat = 0 then Printf.printf "%s\n" "0 orbital, no localization"; let new_mat = if Mat.dim2 mat = 0 then mat else rotate mat pre_angle in if Mat.dim2 mat = 0 then new_mat else localise localisation new_mat methode epsilon iteration cc in (* Core MOs localization *) let loc_m_core = Printf.printf "%s\n" "I/III"; Printf.printf "%s\n" "Localization of core orbitals"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 m_core); Printf.printf "%s\n" ""; f_localise m_core in Printf.printf "%s\n" ""; Printf.printf "%s\n" "End I/III"; Printf.printf "%s\n" ""; (* Localization function without separation *) let f_loc_assemble_1 mat = Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 1/1"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat); f_localise mat in Printf.printf "%s\n" ""; (* Localization function with 1 MOs separation *) let f_loc_assemble_12 mat list_12 = if List.length(list_12 mat) + List.length(miss_elem mat (list_12 mat)) <> (Mat.dim2 mat) then Printf.printf "%s\n" "Bug : List length problem (list_12 or miss_elem list_12)"; let mat_1, mat_2 = split_mat mat (list_12 mat) in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 1/2"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1); let m_loc_1 = f_localise mat_1 in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 2/2"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2); let m_loc_2 = f_localise mat_2 in Printf.printf "%s\n" ""; assemble m_loc_1 m_loc_2 in (* Localization function with 2 MOs separations *) let f_loc_assemble_123 mat list_12 list_2ab = if List.length(list_12 mat) + List.length(miss_elem mat (list_12 mat)) <> (Mat.dim2 mat) then Printf.printf "%s\n" "Bug : List length problem (list_12 or miss_elem list_12)"; let mat_1, mat_2 = split_mat mat (list_12 mat) in if List.length(list_2ab mat_2) + List.length(miss_elem mat_2 (list_2ab mat_2)) <> (Mat.dim2 mat_2) then Printf.printf "%s\n" "Bug : List length problem (list_2ab or miss_elem list_2ab)"; let mat_2a, mat_2b = split_mat mat_2 (list_2ab mat_2) in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 1/3"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1); let m_loc_1 = f_localise mat_1 in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 2/3"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2a); let m_loc_2a = f_localise mat_2a in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 3/3"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2b); let m_loc_2b = f_localise mat_2b in Printf.printf "%s\n" ""; let m_loc_2ab = assemble m_loc_2a m_loc_2b in assemble m_loc_1 m_loc_2ab in (* Localization function with 3 MOs separations *) let f_loc_assemble_1234 mat list_12 list_1ab list_2ab = if List.length(list_12 mat) + List.length(miss_elem mat (list_12 mat)) <> (Mat.dim2 mat) then Printf.printf "%s\n" "Bug : List length problem (list_12 or miss_elem list_12)"; let mat_1, mat_2 = split_mat mat (list_12 mat) in if List.length(list_1ab mat_1) + List.length(miss_elem mat (list_1ab mat_1)) <> (Mat.dim2 mat_1) then Printf.printf "%s\n" "Bug : List length problem (list_1ab or miss_elem list_1ab)"; let mat_1a, mat_1b = split_mat mat_1 (list_1ab mat_1) in if List.length(list_2ab mat_2) + List.length(miss_elem mat (list_2ab mat_1)) <> (Mat.dim2 mat_2) then Printf.printf "%s\n" "Bug : List length problem (list_2ab or miss_elem list_2ab)"; let mat_2a, mat_2b = split_mat mat_2 (list_2ab mat_2) in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 1/4"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1a); let m_loc_1a = f_localise mat_1a in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 2/4"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1b); let m_loc_1b = f_localise mat_1b in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 3/4"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2a); let m_loc_2a = f_localise mat_2a in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 4/4"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2b); let m_loc_2b = f_localise mat_2b in Printf.printf "%s\n" ""; let m_loc_1ab = assemble m_loc_1a m_loc_1b in let m_loc_2ab = assemble m_loc_2a m_loc_2b in assemble m_loc_1ab m_loc_2ab in (* Localization function with 4 separations "by hands" *) let f_loc_assemble_main mat list_1 list_2 list_3 list_4 = if (List.length(list_1) + List.length(list_2) + List.length(list_3) + List.length(list_4)) <> (Mat.dim2 mat) then Printf.printf "%s\n" "Bug : List length problem"; let mat_1 = create_mat mat list_1 in let mat_2 = create_mat mat list_2 in let mat_3 = create_mat mat list_3 in let mat_4 = create_mat mat list_4 in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 1/4"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1); let loc_mat_1 = f_localise mat_1 in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 2/4"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2); let loc_mat_2 = f_localise mat_2 in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 3/4"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_3); let loc_mat_3 = f_localise mat_3 in Printf.printf "%s\n" ""; Printf.printf "%s\n" "Localization 4/4"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_4); let loc_mat_4 = f_localise mat_4 in Printf.printf "%s\n" ""; assemble (assemble loc_mat_1 loc_mat_2) (assemble loc_mat_3 loc_mat_4) in (* Pattern matching for the separation type of the occupied MOs *) let m_assemble_occ, m_assemble_occu = let m_assemble_occu = Printf.printf "%s\n" "II/III"; Printf.printf "%s\n" "Localization of valence orbitals"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 m_occu); match type_separation_occu with | "full" -> let m_assemble_occu = f_loc_assemble_1 m_occu in m_assemble_occu | "pi/sigma" -> let m_assemble_occu = f_loc_assemble_12 m_occu list_pi in m_assemble_occu | "pi/sigma/end" -> let m_assemble_occu = f_loc_assemble_123 m_occu list_pi list_x_end in m_assemble_occu | "pi/1/2" -> let m_assemble_occu = f_loc_assemble_123 m_occu list_pi list_s_12 in m_assemble_occu | "1/2" -> let m_assemble_occu = f_loc_assemble_12 m_occu list_s_12 in m_assemble_occu | "pi1/pi2/1/2" -> let m_assemble_occu = f_loc_assemble_1234 m_occu list_pi list_s_12 list_s_12 in m_assemble_occu | "By_hands" -> let m_assemble_occu = f_loc_assemble_main m_occu (miss_elem m_occ []) [] [] [] in m_assemble_occu | _ -> invalid_arg "Unknown separation type of valence orbitals" in Printf.printf "%s\n" "End II/III"; Printf.printf "%s\n" ""; (assemble loc_m_core m_assemble_occu, m_assemble_occu) in (* Pattern matching for the separation type of the virtual MOs *) let m_assemble_vir = let m_assemble_vir = Printf.printf "%s\n" "III/III"; Printf.printf "%s\n" "Localization of virtual orbitals"; Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 m_vir); match type_separation_vir with | "full" -> let m_assemble_vir = f_loc_assemble_1 m_vir in m_assemble_vir | "pi/sigma" -> let m_assemble_vir = f_loc_assemble_12 m_vir list_pi in m_assemble_vir | "pi/sigma/end" -> let m_assemble_vir = f_loc_assemble_123 m_vir list_pi list_x_end in m_assemble_vir | "pi/1/2" -> let m_assemble_vir = f_loc_assemble_123 m_vir list_pi list_s_12 in m_assemble_vir | "1/2" -> let m_assemble_vir = f_loc_assemble_12 m_vir list_s_12 in m_assemble_vir | "pi1/pi2/1/2" -> let m_assemble_vir = f_loc_assemble_1234 m_vir list_pi list_s_12 list_s_12 in m_assemble_vir | "By_hands" -> let m_assemble_vir = f_loc_assemble_main m_vir (miss_elem m_vir []) [] [] [] in m_assemble_vir | _ -> invalid_arg "Unknown separation type of virtual orbitals" in Printf.printf "%s\n" "End III/III"; Printf.printf "%s\n" ""; m_assemble_vir in (* Tack occupied and virtual MOs together*) let m_assemble_loc = assemble m_assemble_occ m_assemble_vir in (* VI. Analysis *) (* Function to compute the spatial extent of MOs *) (* Coefficient matrix n_ao x n_mo -> vector where the i th element is equal to the spatial extent of the i th orbital *) (* Matrix -> vector *) let distrib mat= if Mat.dim1 mat = 0 then Mat.as_vec mat else (let multipoles = AOBasis.multipole ao_basis in let n_mo = Mat.dim2 mat in let phi_x_phi = Multipole.matrix_x multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat in let phi_y_phi = Multipole.matrix_y multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat in let phi_z_phi = Multipole.matrix_z multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat in let phi_x2_phi = Multipole.matrix_x2 multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat in let phi_y2_phi = Multipole.matrix_y2 multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat in let phi_z2_phi = Multipole.matrix_z2 multipoles |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat in Vec.init n_mo (fun i -> phi_x2_phi.{i,i} -. phi_x_phi.{i,i}**2. +. phi_y2_phi.{i,i} -. phi_y_phi.{i,i}**2. +. phi_z2_phi.{i,i} -. phi_z_phi.{i,i}**2.)) in (* Sorting function *) (* tri insertion (<) list -> list in ascending order *) (* parameter, list -> list *) let rec insere comparaison elem liste = match liste with | [] -> elem::[] | tete::queue -> if comparaison elem tete then elem :: liste else tete :: insere comparaison elem queue in let rec tri_insertion comp = function | [] -> [] | tete::queue -> insere comp tete (tri_insertion comp queue) in (* Sorting function to sort orbital spatial extent by ascending order *) (* coefficient matrix n_ao x n_mo -> matrix n_ao x 2, first column corresponds to the spatial extent in function of the MOs number, the second column corresponds to the spatial extent in ascending order *) (* matrix -> matrix *) let m_distribution mat = let vec_distrib= distrib mat in let list_tri_distrib = tri_insertion (<) (Vec.to_list vec_distrib) in let vec_tri_distrib = Vec.of_list list_tri_distrib in Mat.init_cols (Vec.dim vec_distrib) 2 (fun i j -> if j=1 then vec_distrib.{i} else vec_tri_distrib.{i}) in (* Average/variance/standart deviation/median of spatial extent *) (* Function to compute the average *) let f_average mat = if Mat.dim1 mat = 0 then 0. else Vec.sum (distrib mat) /. float_of_int(Vec.dim (distrib mat)) in (* Function to compute the variance *) let f_variance mat = if (Vec.dim (distrib mat)) = 0 then 0. else Vec.sum(Vec.init (Vec.dim (distrib mat)) (fun i -> ((distrib mat).{i}-. (f_average mat))**2.)) /. float_of_int(Vec.dim (distrib mat)) in (* Function to compute the standard deviation *) let f_stand_dev mat = if (Vec.dim (distrib mat)) = 0 then 0. else sqrt(abs_float(f_variance mat)) in (* Fonction de calcul de la mediane *) let f_median mat = if (Vec.dim (distrib mat)) = 0 then 0. else let vec_distrib= distrib mat in let list_tri_distrib = tri_insertion (<) (Vec.to_list vec_distrib) in let vec_tri_distrib = Vec.of_list list_tri_distrib in if (Vec.dim vec_distrib) mod 2 = 0 then (vec_tri_distrib.{(Vec.dim vec_distrib)/2} +. vec_tri_distrib.{((Vec.dim vec_distrib)/2)+1}) /. 2. else vec_tri_distrib.{int_of_float(float_of_int(Vec.dim vec_distrib)/. 2.) + 1} in (* Display function *) (* Coefficient matrix n_ao x n_mo -> string *) (* matrix -> string *) let analyse mat = let average = f_average mat in let variance = f_variance mat in let stand_dev = f_stand_dev mat in let median = f_median mat in "Average : "^string_of_float(average)^"; Median : "^string_of_float(median)^"; Variance : "^string_of_float(variance)^"; Standard deviation : "^string_of_float(stand_dev) in (* Display the numer of MOs *) (* Coefficient matrix n_ao x n_mo -> string *) (* matrix -> string *) let n_orb mat = "Number of molecular orbitals : "^string_of_int(Mat.dim2 mat) in (* Display *) Printf.printf "%s\n" ""; Printf.printf "%s\n" (n_orb m_C); Printf.printf "%s %i\n" "Number of pi orbitals : " (List.length (list_pi m_C)); Printf.printf "%s %i\n" "Number of occupied pi orbitals : " (List.length (list_pi m_occ)); Printf.printf "%s %i\n" "Number of virtual pi orbitals : " (List.length (list_pi m_vir)); Printf.printf "%s %i\n" "Number of sigma orbitals : " (List.length (miss_elem m_C (list_pi m_C))); Printf.printf "%s %i\n" "Number of occupied sigma orbitals : " (List.length (miss_elem m_occ (list_pi m_occ))); Printf.printf "%s %i\n" "Number of virtual sigma orbitals : " (List.length (miss_elem m_vir (list_pi m_vir))); Printf.printf "%s\n" ""; Printf.printf "%s %s\n" "All MOs before the localization" (analyse m_C); Printf.printf "%s %s\n" "All MOs after the localization" (analyse m_assemble_loc); Printf.printf "%s\n" ""; Util.debug_matrix "Distribution of the spatial extent, before localization / sorting before localization / after localization / sorting after localization" (assemble(m_distribution m_C) (m_distribution m_assemble_loc)); Printf.printf "%s\n" ""; Printf.printf "%s %s\n" "Occupied orbitals : " (n_orb m_occ); Printf.printf "%s %s\n" "Occupied orbitals before localization" (analyse m_occ); Printf.printf "%s %s\n" "Occupied orbitals after localization" (analyse m_assemble_occ); Printf.printf "%s\n" ""; Printf.printf "%s\n" ""; Printf.printf "%s %s\n" "Core orbitals : " (n_orb m_core); Printf.printf "%s %s\n" "Core orbitalses before localization : " (analyse m_core); Printf.printf "%s %s\n" "Core orbitals after localization : " (analyse loc_m_core); Printf.printf "%s\n" ""; Printf.printf "%s\n" ""; Printf.printf "%s %s\n" "Valence orbitals : " (n_orb m_occu); Printf.printf "%s %s\n" "Valence orbitals before localization : " (analyse m_occu); Printf.printf "%s %s\n" "Valence rbitals after localization : " (analyse m_assemble_occu); Printf.printf "%s\n" ""; Printf.printf "%s\n" ""; Printf.printf "%s %s\n" "Virtual orbitals : " (n_orb m_vir); Printf.printf "%s %s\n" "Virtual orbitals before localization : " (analyse m_vir); Printf.printf "%s %s\n" "Virtual orbitals after localization : " (analyse m_assemble_vir); Printf.printf "%s\n" ""; m_assemble_loc