open Lacaml.D open Util open Constants (** One-electron orthogonal basis set, corresponding to Molecular Orbitals. *) module HF = HartreeFock module Si = Simulation type mo_type = | RHF | ROHF | UHF | CASSCF | Projected | Natural of string | Localized of string type t = { simulation : Simulation.t; (* Simulation which produced the MOs *) mo_type : mo_type; (* Kind of MOs (RHF, CASSCF, Localized...) *) mo_occupation : Vec.t; (* Occupation numbers *) mo_coef : Mat.t; (* Matrix of the MO coefficients in the AO basis *) eN_ints : NucInt.t lazy_t; (* Electron-nucleus potential integrals *) ee_ints : ERI.t lazy_t; (* Electron-electron potential integrals *) f12_ints : F12.t lazy_t; (* F12 integrals *) kin_ints : KinInt.t lazy_t; (* Kinetic energy integrals *) one_e_ints : Mat.t lazy_t; (* Kinetic energy integrals *) } let size t = Mat.dim2 t.mo_coef let simulation t = t.simulation let mo_type t = t.mo_type let ao_basis t = Si.ao_basis t.simulation let mo_occupation t = t.mo_occupation let mo_coef t = t.mo_coef let eN_ints t = Lazy.force t.eN_ints let ee_ints t = Lazy.force t.ee_ints let kin_ints t = Lazy.force t.kin_ints let two_e_ints t = Lazy.force t.ee_ints let f12_ints t = Lazy.force t.f12_ints let one_e_ints t = Lazy.force t.one_e_ints let mo_energies t = let m_C = mo_coef t in let f = let m_N = Mat.of_diag @@ mo_occupation t in let m_P = x_o_xt m_N m_C in match t.mo_type with | RHF -> Fock.make_rhf ~density:m_P (ao_basis t) | Projected | ROHF -> (Mat.scal 0.5 m_P; Fock.make_uhf ~density_same:m_P ~density_other:m_P (ao_basis t)) | _ -> failwith "Not implemented" in let m_F0 = Fock.fock f in xt_o_x m_F0 m_C |> Mat.copy_diag let mo_matrix_of_ao_matrix ~mo_coef ao_matrix = xt_o_x ~x:mo_coef ~o:ao_matrix let ao_matrix_of_mo_matrix ~mo_coef ~ao_overlap mo_matrix = let sc = gemm ao_overlap mo_coef in x_o_xt ~x:sc ~o:mo_matrix let make ~simulation ~mo_type ~mo_occupation ~mo_coef () = let ao_basis = Si.ao_basis simulation in let eN_ints = lazy ( AOBasis.eN_ints ao_basis |> NucInt.matrix |> mo_matrix_of_ao_matrix ~mo_coef |> NucInt.of_matrix ) and kin_ints = lazy ( AOBasis.kin_ints ao_basis |> KinInt.matrix |> mo_matrix_of_ao_matrix ~mo_coef |> KinInt.of_matrix ) and ee_ints = lazy ( AOBasis.ee_ints ao_basis |> ERI.four_index_transform mo_coef ) and f12_ints = lazy ( AOBasis.f12_ints ao_basis |> F12.four_index_transform mo_coef ) in let one_e_ints = lazy ( Mat.add (NucInt.matrix @@ Lazy.force eN_ints) (KinInt.matrix @@ Lazy.force kin_ints) ) in { simulation ; mo_type ; mo_occupation ; mo_coef ; eN_ints ; ee_ints ; kin_ints ; one_e_ints ; f12_ints } let values t point = let c = mo_coef t in let a = AOBasis.values (Simulation.ao_basis t.simulation) point in gemv ~trans:`T c a let of_hartree_fock hf = let mo_coef = HF.eigenvectors hf in let simulation = HF.simulation hf in let mo_occupation = HF.occupation hf in let mo_type = match HF.kind hf with | HartreeFock.RHF -> RHF | HartreeFock.ROHF -> ROHF | HartreeFock.UHF -> UHF in make ~simulation ~mo_type ~mo_occupation ~mo_coef () let of_mo_basis simulation other = let mo_coef = let basis = Simulation.ao_basis simulation in let basis_other = ao_basis other in let m_S = Overlap.(matrix @@ of_basis_pair (AOBasis.basis basis) (AOBasis.basis basis_other) ) in let m_X = AOBasis.ortho basis in (* Project other vectors in the current basis *) let m_C = gemm m_S @@ mo_coef other in (* Append dummy vectors to the input vectors *) let result = let vecs = Mat.to_col_vecs m_X in Array.iteri (fun i v -> if (i < Array.length vecs) then vecs.(i) <- v) (Mat.to_col_vecs m_C) ; Mat.of_col_vecs vecs in (* Gram-Schmidt Orthonormalization *) gemm m_X @@ (Util.qr_ortho @@ gemm ~transa:`T m_X result) |> Util.remove_epsilons |> Conventions.rephase in let mo_occupation = let occ = mo_occupation other in Vec.init (Mat.dim2 mo_coef) (fun i -> if (i <= Vec.dim occ) then occ.{i} else 0.) in make ~simulation ~mo_type:Projected ~mo_occupation ~mo_coef () let pp ?(start=1) ?(finish=0) ppf t = let open Lacaml.Io in let rows = Mat.dim1 t.mo_coef and cols = Mat.dim2 t.mo_coef in let finish = match finish with | 0 -> cols | x -> x in let rec aux first = if (first > finish) then () else begin Format.fprintf ppf "@[@[@[%s@;" "Eigenvalues:"; Array.iteri (fun i x -> if (i+1 >= first) && (i+1 <= first+4 ) then Format.fprintf ppf "%12f@ " x) (Vec.to_array @@ mo_energies t); Format.fprintf ppf "@]@;"; Format.fprintf ppf "@[%a@]" (Lacaml.Io.pp_lfmat ~row_labels: (Array.init rows (fun i -> Printf.sprintf "%d " (i + 1))) ~col_labels: (Array.init (min 5 (cols-first+1)) (fun i -> Printf.sprintf "-- %d --" (i + first) )) ~print_right:false ~print_foot:false () ) (lacpy ~ac:first ~n:(min 5 (cols-first+1)) (t.mo_coef)) ; Format.fprintf ppf "@]@;@;@]"; (aux [@tailcall]) (first+5) end in aux start