10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-12-22 20:33:36 +01:00

Added org-mode files in common

This commit is contained in:
Anthony Scemama 2020-12-26 01:47:55 +01:00
parent 4146264c2e
commit ebd753d48e
10 changed files with 1542 additions and 218 deletions

79
common/README.org Normal file
View File

@ -0,0 +1,79 @@
#+TITLE: Common
[[elisp:(org-babel-tangle)]]
This directory contains many utility functions used by all the other directories.
- [[./angular_momentum.org][Angular Momentum]]
- [[./bitstring.org][Bit string]]
* Dune files
:PROPERTIES:
:dune: lib/dune
:dune-test: test/dune
:header-args: :noweb yes
:END:
** Headers
#+begin_src elisp :tangle (org-entry-get nil "dune" t)
(library
#+end_src
#+begin_src elisp :tangle (org-entry-get nil "dune-test" t)
(library
#+end_src
** Library
*** General information
#+begin_src elisp :tangle (org-entry-get nil "dune" t)
(name common)
(public_name qcaml.common)
(synopsis "General utilities used in all QCaml libraries.")
#+end_src
#+begin_src elisp :tangle (org-entry-get nil "dune-test" t)
(name test_common)
(synopsis "Test for common library")
#+end_src
*** Dependencies
#+begin_src elisp :tangle (org-entry-get nil "dune" t)
(libraries
str
zarith
getopt
)
#+end_src
#+begin_src elisp :tangle (org-entry-get nil "dune-test" t)
(libraries
alcotest
qcaml.common
)
#+end_src
*** Extra C files
The ~math_functions~ file contains small C snippets to add missing
functionalities to OCaml, such as support for the ~popcnt~ instruction.
#+begin_src elisp :tangle (org-entry-get nil "dune" t)
(c_names
math_functions
)
(c_flags (:standard)
-Ofast -march=native -fPIC
)
#+end_src
** Footers
#+begin_src elisp :tangle (org-entry-get nil "dune" t)
)
#+end_src
#+begin_src elisp :tangle (org-entry-get nil "dune-test" t)
)
#+end_src

330
common/angular_momentum.org Normal file
View File

@ -0,0 +1,330 @@
#+TITLE: Angular Momentum
[[elisp:(org-babel-tangle)]]
* Angular Momentum
:PROPERTIES:
:ml: lib/angular_momentum.ml
:mli: lib/angular_momentum.mli
:header-args: :noweb yes :comments both
:END:
Azimuthal quantum number, repsesented as $s,p,d,...$.
** Type
#+NAME: types
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
type t =
| S | P | D | F | G | H | I | J | K | L | M | N | O
| Int of int
exception Angular_momentum_error of string
type kind =
Singlet of t
| Doublet of (t * t)
| Triplet of (t * t * t)
| Quartet of (t * t * t * t)
#+end_src
An exception is raised when the ~Angular_momentum.t~ element can't
be created.
The ~kind~ is used to build shells, shell doublets, triplets or
quartets, use in the two-electron operators.
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
<<types>>
open Powers
#+end_src
** Conversions
*** ~of_char~
Returns an ~Angular_momentum.t~ when a shell is given as a character
(case insensitive):
#+begin_example
Angular_momentum.of_char 'p' -> Angular_momentum.P
#+end_example
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val of_char : char -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let of_char = function
| 's' | 'S' -> S | 'p' | 'P' -> P
| 'd' | 'D' -> D | 'f' | 'F' -> F
| 'g' | 'G' -> G | 'h' | 'H' -> H
| 'i' | 'I' -> I | 'j' | 'J' -> J
| 'k' | 'K' -> K | 'l' | 'L' -> L
| 'm' | 'M' -> M | 'n' | 'N' -> N
| 'o' | 'O' -> O
| c -> raise (Angular_momentum_error (String.make 1 c))
#+end_src
*** ~to_string~
Converts the angular momentum into a string:
#+begin_example
Angular_momentum.(to_string D) -> "D"
#+end_example
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val to_string : t -> string
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let to_string = function
| S -> "S" | P -> "P"
| D -> "D" | F -> "F"
| G -> "G" | H -> "H"
| I -> "I" | J -> "J"
| K -> "K" | L -> "L"
| M -> "M" | N -> "N"
| O -> "O" | Int i -> string_of_int i
#+end_src
*** ~to_char~
Converts the angular momentum into a char:
#+begin_example
Angular_momentum.(to_char D) -> 'D'
#+end_example
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val to_char : t -> char
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let to_char = function
| S -> 'S' | P -> 'P'
| D -> 'D' | F -> 'F'
| G -> 'G' | H -> 'H'
| I -> 'I' | J -> 'J'
| K -> 'K' | L -> 'L'
| M -> 'M' | N -> 'N'
| O -> 'O' | Int _ -> '_'
#+end_src
*** ~to_int~
Returns the $l_{max}$ value of the shell:
#+begin_example
Angular_momentum.(to_char D) -> 2
#+end_example
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val to_int : t -> int
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let to_int = function
| S -> 0 | P -> 1
| D -> 2 | F -> 3
| G -> 4 | H -> 5
| I -> 6 | J -> 7
| K -> 8 | L -> 9
| M -> 10 | N -> 11
| O -> 12 | Int i -> i
#+end_src
*** ~of_int~
Returns a shell given an $l$ value.
#+begin_example
Angular_momentum.of_int 3 -> Angular_momentum.F
#+end_example
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val of_int : int -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let of_int = function
| 0 -> S | 1 -> P
| 2 -> D | 3 -> F
| 4 -> G | 5 -> H
| 6 -> I | 7 -> J
| 8 -> K | 9 -> L
| 10 -> M | 11 -> N
| 12 -> O | i -> Int i
#+end_src
** Shell functions
*** ~n_functions~
Returns the number of cartesian functions in a shell.
#+begin_example
Angular_momentum.n_functions D -> 6
#+end_example
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val n_functions : t -> int
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let n_functions a =
let a =
to_int a
in
(a*a + 3*a + 2)/2
#+end_src
*** ~zkey_array~
Array of ~Zkey.t~, where each element is a a key associated with the
the powers of $x,y,z$.
#+begin_example
Angular_momentum.( zkey_array Doublet (P,S) ) ->
[| {Zkey.left = 0; right = 1125899906842624} ;
{Zkey.left = 0; right = 1099511627776} ;
{Zkey.left = 0; right = 1073741824} |]
=
let s,x,y,z =
Powers.( of_int_tuple (0,0,0),
of_int_tuple (1,0,0),
of_int_tuple (0,1,0),
of_int_tuple (0,0,1) )
in
Array.map (fun (a,b) -> {!Zkey.of_powers_six} a b)
[| (x,s) ; (y,s) ; (z,s) |]
#+end_example
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val zkey_array : kind -> Zkey.t array
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let zkey_array_memo : (kind, Zkey.t array) Hashtbl.t =
Hashtbl.create 13
let zkey_array a =
let keys_1d l =
let create_z { x ; y ; _ } =
Powers.of_int_tuple (x,y,l-(x+y))
in
let rec create_y accu xyz =
let { x ; y ; z ;_ } = xyz in
match y with
| 0 -> (create_z xyz)::accu
| _ -> let ynew = y-1 in
(create_y [@tailcall]) ( (create_z xyz)::accu) (Powers.of_int_tuple (x,ynew,z))
in
let rec create_x accu xyz =
let { x ; z ;_ } = xyz in
match x with
| 0 -> (create_y [] xyz)@accu
| _ -> let xnew = x-1 in
let ynew = l-xnew in
(create_x [@tailcall]) ((create_y [] xyz)@accu) (Powers.of_int_tuple (xnew, ynew, z))
in
create_x [] (Powers.of_int_tuple (l,0,0))
|> List.rev
in
try
Hashtbl.find zkey_array_memo a
with Not_found ->
let result =
begin
match a with
| Singlet l1 ->
List.rev_map (fun x -> Zkey.of_powers_three x) (keys_1d @@ to_int l1)
| Doublet (l1, l2) ->
List.rev_map (fun a ->
List.rev_map (fun b -> Zkey.of_powers_six a b) (keys_1d @@ to_int l2)
) (keys_1d @@ to_int l1)
|> List.concat
| Triplet (l1, l2, l3) ->
List.rev_map (fun a ->
List.rev_map (fun b ->
List.rev_map (fun c ->
Zkey.of_powers_nine a b c) (keys_1d @@ to_int l3)
) (keys_1d @@ to_int l2)
|> List.concat
) (keys_1d @@ to_int l1)
|> List.concat
| Quartet (l1, l2, l3, l4) ->
List.rev_map (fun a ->
List.rev_map (fun b ->
List.rev_map (fun c ->
List.rev_map (fun d ->
Zkey.of_powers_twelve a b c d) (keys_1d @@ to_int l4)
) (keys_1d @@ to_int l3)
|> List.concat
) (keys_1d @@ to_int l2)
|> List.concat
) (keys_1d @@ to_int l1)
|> List.concat
end
|> List.rev
|> Array.of_list
in
Hashtbl.add zkey_array_memo a result;
result
#+end_src
** Arithmetic
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val ( + ) : t -> t -> t
val ( - ) : t -> t -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let ( + ) a b =
of_int ( (to_int a) + (to_int b) )
let ( - ) a b =
of_int ( (to_int a) - (to_int b) )
#+end_src
** Printers
Printers can print as a string (~pp_string~) or as an integer (~pp_int~).
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val pp_string : Format.formatter -> t -> unit
val pp_int : Format.formatter -> t -> unit
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let pp_string ppf x =
Format.fprintf ppf "@[%s@]" (to_string x)
let pp_int ppf x =
Format.fprintf ppf "@[%d@]" (to_int x)
#+end_src
** TODO Tests

559
common/bitstring.org Normal file
View File

@ -0,0 +1,559 @@
#+TITLE: Bit string
[[elisp:(org-babel-tangle)]]
* Bit string
:PROPERTIES:
:ml: lib/bitstring.ml
:mli: lib/bitstring.mli
:test-ml: test/bitstring.ml
:header-args: :noweb yes :comments both
:END:
We define here a data type to handle bit strings efficiently.
When the bit string contains less than 64 bits, it is stored
internally in a 63-bit integer and uses bitwise instructions.
When more than 63 bits are required, the =zarith= library is used to
consider the bit string as a multi-precision integer.
** Single-integer implementation
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
module One = struct
let of_int x =
assert (x > 0); x
let numbits _ = 63
let zero = 0
let is_zero x = x = 0
let shift_left x i = x lsl i
let shift_right x i = x lsr i
let shift_left_one i = 1 lsl i
let testbit x i = ( (x lsr i) land 1 ) = 1
let logor a b = a lor b
let neg a = - a
let logxor a b = a lxor b
let logand a b = a land b
let lognot a = lnot a
let minus_one a = a - 1
let plus_one a = a + 1
let popcount = function
| 0 -> 0
| r -> Util.popcnt (Int64.of_int r)
let trailing_zeros r =
Util.trailz (Int64.of_int r)
let hamdist a b =
a lxor b
|> popcount
let pp ppf s =
Format.fprintf ppf "@[@[%a@]@]" (Util.pp_bitstring 64)
(Z.of_int s)
end
#+end_src
** Zarith implementation
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
module Many = struct
let of_z x = x
let zero = Z.zero
let is_zero x = x = Z.zero
let shift_left = Z.shift_left
let shift_right = Z.shift_right
let shift_left_one i = Z.shift_left Z.one i
let testbit = Z.testbit
let logor = Z.logor
let logxor = Z.logxor
let logand = Z.logand
let lognot = Z.lognot
let neg = Z.neg
let minus_one = Z.pred
let plus_one = Z.succ
let trailing_zeros = Z.trailing_zeros
let hamdist = Z.hamdist
let numbits i = max (Z.numbits i) 64
let popcount z =
if z = Z.zero then 0 else Z.popcount z
let pp ppf s =
Format.fprintf ppf "@[@[%a@]@]" (Util.pp_bitstring (Z.numbits s)) s
end
#+end_src
** Type
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
type t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
type t =
| One of int
| Many of Z.t
#+end_src
** Tests header
#+begin_src ocaml :tangle (org-entry-get nil "test-ml" t)
open Common.Bitstring
let check msg x = Alcotest.(check bool) msg true x
let test_all () =
let x = 8745687 in
let one_x = of_int x in
let z = Z.shift_left (Z.of_int x) 64 in
let many_x = of_z z in
#+end_src
** General implementation
*** ~of_int~
Creates a bit string from an ~int~.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val of_int : int -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let of_int x =
One (One.of_int x)
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "test-ml" t)
Alcotest.(check bool) "of_x" true (one_x = (of_int x));
#+end_src
*** ~of_z~
Creates a bit string from an ~Z.t~ multi-precision integer.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val of_z : Z.t -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let of_z x =
if Z.numbits x < 64 then One (Z.to_int x) else Many (Many.of_z x)
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "test-ml" t)
Alcotest.(check bool) "of_z" true (one_x = (of_z (Z.of_int x)));
#+end_src
*** ~zero~
~zero n~ creates a zero bit string with ~n~ bits.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val zero : int -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let zero = function
| n when n < 64 -> One (One.zero)
| _ -> Many (Many.zero)
#+end_src
*** ~numbits~
Returns the number of bits used to represent the bit string.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val numbits : t -> int
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let numbits = function
| One x -> One.numbits x
| Many x -> Many.numbits x
#+end_src
*** ~is_zero~
True if all the bits of the bit string are zero.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val is_zero : t -> bool
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let is_zero = function
| One x -> One.is_zero x
| Many x -> Many.is_zero x
#+end_src
*** ~neg~
Returns the negative of the integer interpretation of the bit string.
#+begin_example
neg (of_int x) = neg (of_int (-x))
#+end_example
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val neg : t -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let neg = function
| One x -> One (One.neg x)
| Many x -> Many (Many.neg x)
#+end_src
*** ~shift_left~
~shift_left t n~ returns a new bit strings with all the bits
shifted ~n~ positions to the left.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val shift_left : t -> int -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let shift_left x i = match x with
| One x -> One (One.shift_left x i)
| Many x -> Many (Many.shift_left x i)
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "test-ml" t)
Alcotest.(check bool) "shift_left1" true (of_int (x lsl 3) = shift_left one_x 3);
Alcotest.(check bool) "shift_left2" true (of_z (Z.shift_left z 3) = shift_left many_x 3);
Alcotest.(check bool) "shift_left3" true (of_z (Z.shift_left z 100) = shift_left many_x 100);
#+end_src
*** ~shift_right~
~shift_right t n~ returns a new bit strings with all the bits
shifted ~n~ positions to the right.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val shift_right : t -> int -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let shift_right x i = match x with
| One x -> One (One.shift_right x i)
| Many x -> Many (Many.shift_right x i)
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "test-ml" t)
Alcotest.(check bool) "shift_right1" true (of_int (x lsr 3) = shift_right one_x 3);
Alcotest.(check bool) "shift_right2" true (of_z (Z.shift_right z 3) = shift_right many_x 3);
#+end_src
*** ~shift_left_one~
~shift_left_one size n~ returns a new bit strings with the ~n~-th
bit set to one.
It is equivalent as shifting ~1~ by ~n~ bits to the left.
~size~ is the total number of bits of the bit string.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val shift_left_one : int -> int -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let shift_left_one = function
| n when n < 64 -> fun i -> One (One.shift_left_one i)
| _ -> fun i -> Many (Many.shift_left_one i)
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "test-ml" t)
Alcotest.(check bool) "shift_left_one1" true (of_int (1 lsl 3) = shift_left_one 4 3);
Alcotest.(check bool) "shift_left_one2" true (of_z (Z.shift_left Z.one 200) = shift_left_one 300 200);
#+end_src
*** ~testbit~
~testbit t n~ is true if the ~n~-th bit of the bit string ~t~ is
set to ~1~.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val testbit : t -> int -> bool
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let testbit = function
| One x -> One.testbit x
| Many x -> Many.testbit x
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "test-ml" t)
Alcotest.(check bool) "testbit1" true (testbit (of_int 8) 3);
Alcotest.(check bool) "testbit2" false (testbit (of_int 8) 2);
Alcotest.(check bool) "testbit3" false (testbit (of_int 8) 4);
Alcotest.(check bool) "testbit4" true (testbit (of_z (Z.of_int 8)) 3);
Alcotest.(check bool) "testbit5" false (testbit (of_z (Z.of_int 8)) 2);
Alcotest.(check bool) "testbit6" false (testbit (of_z (Z.of_int 8)) 4);
#+end_src
*** ~logor~
Bitwise logical or.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val logor : t -> t -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let logor a b =
match a,b with
| One a, One b -> One (One.logor a b)
| Many a, Many b -> Many (Many.logor a b)
| _ -> invalid_arg "Bitstring.logor"
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "test-ml" t)
Alcotest.(check bool) "logor1" true (of_int (1 lor 2) = logor (of_int 1) (of_int 2));
Alcotest.(check bool) "logor2" true (of_z (Z.of_int (1 lor 2)) = logor (of_z Z.one) (of_z (Z.of_int 2)));
#+end_src
*** ~logxor~
Bitwise logical exclusive or.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val logxor : t -> t -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let logxor a b =
match a,b with
| One a, One b -> One (One.logxor a b)
| Many a, Many b -> Many (Many.logxor a b)
| _ -> invalid_arg "Bitstring.logxor"
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "test-ml" t)
Alcotest.(check bool) "logxor1" true (of_int (1 lxor 2) = logxor (of_int 1) (of_int 2));
Alcotest.(check bool) "logxor2" true (of_z (Z.of_int (1 lxor 2)) = logxor (of_z Z.one) (of_z (Z.of_int 2)));
#+end_src
*** ~logand~
Bitwise logical and.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val logand : t -> t -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let logand a b =
match a,b with
| One a, One b -> One (One.logand a b)
| Many a, Many b -> Many (Many.logand a b)
| _ -> invalid_arg "Bitstring.logand"
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "test-ml" t)
Alcotest.(check bool) "logand1" true (of_int (1 land 3) = logand (of_int 1) (of_int 3));
Alcotest.(check bool) "logand2" true (of_z (Z.of_int (1 land 3)) = logand (of_z Z.one) (of_z (Z.of_int 3)));
#+end_src
*** ~lognot~
Bitwise logical negation.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val lognot : t -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let lognot = function
| One x -> One (One.lognot x)
| Many x -> Many (Many.lognot x)
#+end_src
*** ~minus_one~
Takes the integer representation of the bit string and removes one.
#+begin_example
minus_one (of_int 10) = of_int 9
#+end_example
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val minus_one : t -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let minus_one = function
| One x -> One (One.minus_one x)
| Many x -> Many (Many.minus_one x)
#+end_src
*** ~plus_one~
Takes the integer representation of the bit string and adds one.
#+begin_example
plus_one (of_int 10) = of_int 11
#+end_example
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val plus_one : t -> t
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let plus_one = function
| One x -> One (One.plus_one x)
| Many x -> Many (Many.plus_one x)
#+end_src
*** ~trailing_zeros~
Returns the number of trailing zeros in the bit string.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val trailing_zeros : t -> int
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let trailing_zeros = function
| One x -> One.trailing_zeros x
| Many x -> Many.trailing_zeros x
#+end_src
*** ~hamdist~
Returns the Hamming distance, i.e. the number of bits differing
between two bit strings.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val hamdist : t -> t -> int
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let hamdist a b = match a, b with
| One a, One b -> One.hamdist a b
| Many a, Many b -> Many.hamdist a b
| _ -> invalid_arg "Bitstring.hamdist"
#+end_src
*** ~popcount~
Returns the number of bits set to one in the bit string.
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val popcount : t -> int
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let popcount = function
| One x -> One.popcount x
| Many x -> Many.popcount x
#+end_src
*** ~to_list~
Converts a bit string into a list of integers indicating the
positions where the bits are set to ~1~. The first value for the
position is not ~0~ but ~1~.
#+begin_example
Bitstring.to_list (of_int 5);;
- : int list = [1; 3]
#+end_example
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val to_list : ?accu:(int list) -> t -> int list
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let rec to_list ?(accu=[]) = function
| t when (is_zero t) -> List.rev accu
| t -> let newlist =
(trailing_zeros t + 1)::accu
in
logand t @@ minus_one t
|> (to_list [@tailcall]) ~accu:newlist
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "test-ml" t)
Alcotest.(check bool) "to_list" true ([ 1 ; 3 ; 4 ; 6 ] = (to_list (of_int 45)));
#+end_src
*** ~permtutations~
~permtutations m n~ generates the list of all possible ~n~-bit
strings with ~m~ bits set to ~1~.
Algorithm adapted from [[https://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation][Bit twiddling hacks]].
#+begin_example
Bitstring.permtutations 2 4 |> List.map (fun x -> Format.asprintf "%a" Bitstring.pp x) ;;
|> List.map (fun x -> Format.asprintf "%a" Bitstring.pp x) ;;
- : string list =
["++--------------------------------------------------------------";
"+-+-------------------------------------------------------------";
"-++-------------------------------------------------------------";
"+--+------------------------------------------------------------";
"-+-+------------------------------------------------------------";
"--++------------------------------------------------------------"]
#+end_example
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val permtutations : int -> int -> t list
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let permtutations m n =
let rec aux k u rest =
if k=1 then
List.rev (u :: rest)
else
let t = logor u @@ minus_one u in
let t' = plus_one t in
let not_t = lognot t in
let neg_not_t = neg not_t in
let t'' = shift_right (minus_one @@ logand not_t neg_not_t) (trailing_zeros u + 1) in
(*
let t'' = shift_right (minus_one (logand (lognot t) t')) (trailing_zeros u + 1) in
,*)
(aux [@tailcall]) (k-1) (logor t' t'') (u :: rest)
in
aux (Util.binom n m) (minus_one (shift_left_one n m)) []
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "test-ml" t)
check "permutations"
(permtutations 2 4 = List.map of_int
[ 3 ; 5 ; 6 ; 9 ; 10 ; 12 ]);
#+end_src
** Printers
Printers can print as a string (~pp_string~) or as an integer (~pp_int~).
#+begin_src ocaml :tangle (org-entry-get nil "mli" t)
val pp : Format.formatter -> t -> unit
#+end_src
#+begin_src ocaml :tangle (org-entry-get nil "ml" t)
let pp ppf = function
| One x -> One.pp ppf x
| Many x -> Many.pp ppf x
#+end_src
** Tests
#+begin_src ocaml :tangle (org-entry-get nil "test-ml" t)
()
let tests = [
"all", `Quick, test_all;
]
#+end_src

View File

@ -1,11 +1,29 @@
open Powers
(* An exception is raised when the ~Angular_momentum.t~ element can't
* be created.
*
* The ~kind~ is used to build shells, shell doublets, triplets or
* quartets, use in the two-electron operators. *)
(* [[file:../angular_momentum.org::*Type][Type:2]] *)
type t =
| S | P | D | F | G | H | I | J | K | L | M | N | O
| Int of int
exception Angular_momentum_error of string
type t =
| S | P | D | F | G | H | I | J | K | L | M | N | O
| Int of int
type kind =
Singlet of t
| Doublet of (t * t)
| Triplet of (t * t * t)
| Quartet of (t * t * t * t)
open Powers
(* Type:2 ends here *)
(* [[file:../angular_momentum.org::*~of_char~][~of_char~:2]] *)
let of_char = function
| 's' | 'S' -> S | 'p' | 'P' -> P
| 'd' | 'D' -> D | 'f' | 'F' -> F
@ -15,7 +33,9 @@ let of_char = function
| 'm' | 'M' -> M | 'n' | 'N' -> N
| 'o' | 'O' -> O
| c -> raise (Angular_momentum_error (String.make 1 c))
(* ~of_char~:2 ends here *)
(* [[file:../angular_momentum.org::*~to_string~][~to_string~:2]] *)
let to_string = function
| S -> "S" | P -> "P"
| D -> "D" | F -> "F"
@ -24,7 +44,9 @@ let to_string = function
| K -> "K" | L -> "L"
| M -> "M" | N -> "N"
| O -> "O" | Int i -> string_of_int i
(* ~to_string~:2 ends here *)
(* [[file:../angular_momentum.org::*~to_char~][~to_char~:2]] *)
let to_char = function
| S -> 'S' | P -> 'P'
| D -> 'D' | F -> 'F'
@ -33,7 +55,9 @@ let to_char = function
| K -> 'K' | L -> 'L'
| M -> 'M' | N -> 'N'
| O -> 'O' | Int _ -> '_'
(* ~to_char~:2 ends here *)
(* [[file:../angular_momentum.org::*~to_int~][~to_int~:2]] *)
let to_int = function
| S -> 0 | P -> 1
| D -> 2 | F -> 3
@ -42,8 +66,9 @@ let to_int = function
| K -> 8 | L -> 9
| M -> 10 | N -> 11
| O -> 12 | Int i -> i
(* ~to_int~:2 ends here *)
(* [[file:../angular_momentum.org::*~of_int~][~of_int~:2]] *)
let of_int = function
| 0 -> S | 1 -> P
| 2 -> D | 3 -> F
@ -52,28 +77,21 @@ let of_int = function
| 8 -> K | 9 -> L
| 10 -> M | 11 -> N
| 12 -> O | i -> Int i
(* ~of_int~:2 ends here *)
type kind =
| Singlet of t
| Doublet of (t*t)
| Triplet of (t*t*t)
| Quartet of (t*t*t*t)
(* [[file:../angular_momentum.org::*~n_functions~][~n_functions~:2]] *)
let n_functions a =
let a =
let a =
to_int a
in
(a*a + 3*a + 2)/2
(* ~n_functions~:2 ends here *)
(* [[file:../angular_momentum.org::*~zkey_array~][~zkey_array~:2]] *)
let zkey_array_memo : (kind, Zkey.t array) Hashtbl.t =
Hashtbl.create 13
Hashtbl.create 13
(** Returns an array of Zkeys corresponding to all possible angular momenta *)
let zkey_array a =
let zkey_array a =
let keys_1d l =
let create_z { x ; y ; _ } =
@ -84,15 +102,15 @@ let zkey_array a =
match y with
| 0 -> (create_z xyz)::accu
| _ -> let ynew = y-1 in
(create_y [@tailcall]) ( (create_z xyz)::accu) (Powers.of_int_tuple (x,ynew,z))
(create_y [@tailcall]) ( (create_z xyz)::accu) (Powers.of_int_tuple (x,ynew,z))
in
let rec create_x accu xyz =
let { x ; z ;_ } = xyz in
match x with
| 0 -> (create_y [] xyz)@accu
| _ -> let xnew = x-1 in
let ynew = l-xnew in
(create_x [@tailcall]) ((create_y [] xyz)@accu) (Powers.of_int_tuple (xnew, ynew, z))
let ynew = l-xnew in
(create_x [@tailcall]) ((create_y [] xyz)@accu) (Powers.of_int_tuple (xnew, ynew, z))
in
create_x [] (Powers.of_int_tuple (l,0,0))
|> List.rev
@ -103,62 +121,62 @@ let zkey_array a =
with Not_found ->
let result =
let result =
begin
match a with
| Singlet l1 ->
List.rev_map (fun x -> Zkey.of_powers_three x) (keys_1d @@ to_int l1)
| Singlet l1 ->
List.rev_map (fun x -> Zkey.of_powers_three x) (keys_1d @@ to_int l1)
| Doublet (l1, l2) ->
List.rev_map (fun a ->
| Doublet (l1, l2) ->
List.rev_map (fun a ->
List.rev_map (fun b -> Zkey.of_powers_six a b) (keys_1d @@ to_int l2)
) (keys_1d @@ to_int l1)
|> List.concat
|> List.concat
| Triplet (l1, l2, l3) ->
List.rev_map (fun a ->
List.rev_map (fun a ->
List.rev_map (fun b ->
List.rev_map (fun c ->
Zkey.of_powers_nine a b c) (keys_1d @@ to_int l3)
) (keys_1d @@ to_int l2)
List.rev_map (fun c ->
Zkey.of_powers_nine a b c) (keys_1d @@ to_int l3)
) (keys_1d @@ to_int l2)
|> List.concat
) (keys_1d @@ to_int l1)
|> List.concat
|> List.concat
| Quartet (l1, l2, l3, l4) ->
List.rev_map (fun a ->
List.rev_map (fun a ->
List.rev_map (fun b ->
List.rev_map (fun c ->
List.rev_map (fun d ->
Zkey.of_powers_twelve a b c d) (keys_1d @@ to_int l4)
) (keys_1d @@ to_int l3)
|> List.concat
) (keys_1d @@ to_int l2)
List.rev_map (fun c ->
List.rev_map (fun d ->
Zkey.of_powers_twelve a b c d) (keys_1d @@ to_int l4)
) (keys_1d @@ to_int l3)
|> List.concat
) (keys_1d @@ to_int l2)
|> List.concat
) (keys_1d @@ to_int l1)
|> List.concat
|> List.concat
end
|> List.rev
|> Array.of_list
in
Hashtbl.add zkey_array_memo a result;
result
(* ~zkey_array~:2 ends here *)
(* [[file:../angular_momentum.org::*Arithmetic][Arithmetic:2]] *)
let ( + ) a b =
of_int ( (to_int a) + (to_int b) )
let ( - ) a b =
of_int ( (to_int a) - (to_int b) )
(* Arithmetic:2 ends here *)
(** {2 Printers} *)
(* [[file:../angular_momentum.org::*Printers][Printers:2]] *)
let pp_string ppf x =
Format.fprintf ppf "@[%s@]" (to_string x)
let pp_int ppf x =
Format.fprintf ppf "@[%d@]" (to_int x)
(* Printers:2 ends here *)

View File

@ -1,115 +1,142 @@
(** Azimuthal quantum number, represented as {% $s,p,d,\dots$ %} *)
(* Type
*
* #+NAME: types *)
(* [[file:../angular_momentum.org::types][types]] *)
type t =
| S | P | D | F | G | H | I | J | K | L | M | N | O
| Int of int
| S | P | D | F | G | H | I | J | K | L | M | N | O
| Int of int
exception Angular_momentum_error of string
(** Raised when the {!Angular_momentum.t} element can't be created.
*)
val of_char : char -> t
(** Returns an {!Angular_momentum.t} when a shell is given as a character (case
insensitive).
Example:
{[
Angular_momentum.of_char 'p' -> Angular_momentum.P
]}
*)
val to_string : t -> string
(**
{[
Angular_momentum.(to_string D) -> "D"
]}
*)
val to_char : t -> char
(**
{[
Angular_momentum.(to_char D) -> 'D'
]}
*)
val to_int : t -> int
(**
Returns the l{_max} value of the shell.
Example:
{[
Angular_momentum.to_int D -> 2
]}
*)
val of_int : int -> t
(**
Opposite of {!of_int}.
Example:
{[
Angular_momentum.of_int 3 -> Angular_momentum.F
]}
*)
type kind =
Singlet of t
| Doublet of (t * t)
| Triplet of (t * t * t)
| Quartet of (t * t * t * t)
(* types ends here *)
(* ~of_char~
*
* Returns an ~Angular_momentum.t~ when a shell is given as a character
* (case insensitive):
*
* #+begin_example
* Angular_momentum.of_char 'p' -> Angular_momentum.P
* #+end_example *)
(* [[file:../angular_momentum.org::*~of_char~][~of_char~:1]] *)
val of_char : char -> t
(* ~of_char~:1 ends here *)
(* ~to_string~
*
* Converts the angular momentum into a string:
*
* #+begin_example
* Angular_momentum.(to_string D) -> "D"
* #+end_example *)
(* [[file:../angular_momentum.org::*~to_string~][~to_string~:1]] *)
val to_string : t -> string
(* ~to_string~:1 ends here *)
(* ~to_char~
*
* Converts the angular momentum into a char:
*
* #+begin_example
* Angular_momentum.(to_char D) -> 'D'
* #+end_example *)
(* [[file:../angular_momentum.org::*~to_char~][~to_char~:1]] *)
val to_char : t -> char
(* ~to_char~:1 ends here *)
(* ~to_int~
*
* Returns the $l_{max}$ value of the shell:
*
* #+begin_example
* Angular_momentum.(to_char D) -> 2
* #+end_example *)
(* [[file:../angular_momentum.org::*~to_int~][~to_int~:1]] *)
val to_int : t -> int
(* ~to_int~:1 ends here *)
(* ~of_int~
*
* Returns a shell given an $l$ value.
*
* #+begin_example
* Angular_momentum.of_int 3 -> Angular_momentum.F
* #+end_example *)
(* [[file:../angular_momentum.org::*~of_int~][~of_int~:1]] *)
val of_int : int -> t
(* ~of_int~:1 ends here *)
(* ~n_functions~
*
* Returns the number of cartesian functions in a shell.
*
* #+begin_example
* Angular_momentum.n_functions D -> 6
* #+end_example *)
(* [[file:../angular_momentum.org::*~n_functions~][~n_functions~:1]] *)
val n_functions : t -> int
(** Number of cartesian functions in shell.
(* ~n_functions~:1 ends here *)
Example:
{[
Angular_momentum.n_functions D -> 6
]}
*)
(* ~zkey_array~
*
* Array of ~Zkey.t~, where each element is a a key associated with the
* the powers of $x,y,z$.
*
* #+begin_example
* Angular_momentum.( zkey_array Doublet (P,S) ) ->
* [| {Zkey.left = 0; right = 1125899906842624} ;
* {Zkey.left = 0; right = 1099511627776} ;
* {Zkey.left = 0; right = 1073741824} |]
* =
*
* let s,x,y,z =
* Powers.( of_int_tuple (0,0,0),
* of_int_tuple (1,0,0),
* of_int_tuple (0,1,0),
* of_int_tuple (0,0,1) )
* in
* Array.map (fun (a,b) -> {!Zkey.of_powers_six} a b)
* [| (x,s) ; (y,s) ; (z,s) |]
*
* #+end_example *)
(* [[file:../angular_momentum.org::*~zkey_array~][~zkey_array~:1]] *)
val zkey_array : kind -> Zkey.t array
(** Array of {!Zkey.t}, where each element is a a key associated with the
the powers of x,y,z.
(* ~zkey_array~:1 ends here *)
Example:
(* Arithmetic *)
{[
Angular_momentum.( zkey_array Doublet (P,S) ) ->
[| {Zkey.left = 0; right = 1125899906842624} ;
{Zkey.left = 0; right = 1099511627776} ;
{Zkey.left = 0; right = 1073741824} |]
=
let s,x,y,z =
Powers.( of_int_tuple (0,0,0),
of_int_tuple (1,0,0),
of_int_tuple (0,1,0),
of_int_tuple (0,0,1) )
in
Array.map (fun (a,b) -> {!Zkey.of_powers_six} a b)
[| (x,s) ; (y,s) ; (z,s) |]
]}
*)
(* [[file:../angular_momentum.org::*Arithmetic][Arithmetic:1]] *)
val ( + ) : t -> t -> t
val ( - ) : t -> t -> t
(* Arithmetic:1 ends here *)
(* Printers
*
* Printers can print as a string (~pp_string~) or as an integer (~pp_int~). *)
(** {2 Printers} *)
(* [[file:../angular_momentum.org::*Printers][Printers:1]] *)
val pp_string : Format.formatter -> t -> unit
(** Prints as a string S, P, D, ... *)
val pp_int : Format.formatter -> t -> unit
(** Prints as an integer 0, 1, 2, ... *)
(* Printers:1 ends here *)

View File

@ -1,7 +1,9 @@
module One = struct
type t = int
(* Single-integer implementation *)
(* [[file:../bitstring.org::*Single-integer implementation][Single-integer implementation:1]] *)
module One = struct
let of_int x =
assert (x > 0); x
@ -24,30 +26,26 @@ module One = struct
| 0 -> 0
| r -> Util.popcnt (Int64.of_int r)
let trailing_zeros r =
Util.trailz (Int64.of_int r)
let hamdist a b =
a lxor b
|> popcount
let pp ppf s =
Format.fprintf ppf "@[@[%a@]@]" (Util.pp_bitstring 64)
(Z.of_int s)
end
(* Single-integer implementation:1 ends here *)
(* Zarith implementation *)
(* [[file:../bitstring.org::*Zarith implementation][Zarith implementation:1]] *)
module Many = struct
type t = Z.t
let of_int = Z.of_int
let of_z x = x
let zero = Z.zero
let is_zero x = x = Z.zero
@ -73,98 +71,134 @@ module Many = struct
Format.fprintf ppf "@[@[%a@]@]" (Util.pp_bitstring (Z.numbits s)) s
end
(* Zarith implementation:1 ends here *)
(* [[file:../bitstring.org::*Type][Type:2]] *)
type t =
| One of int
| Many of Z.t
(* Type:2 ends here *)
type t =
| One of int
| Many of Z.t
(* [[file:../bitstring.org::*~of_int~][~of_int~:2]] *)
let of_int x =
One (One.of_int x)
(* ~of_int~:2 ends here *)
(* [[file:../bitstring.org::*~of_z~][~of_z~:2]] *)
let of_z x =
if Z.numbits x < 64 then One (Z.to_int x) else Many (Many.of_z x)
(* ~of_z~:2 ends here *)
(* [[file:../bitstring.org::*~zero~][~zero~:2]] *)
let zero = function
| n when n < 64 -> One (One.zero)
| _ -> Many (Many.zero)
(* ~zero~:2 ends here *)
(* [[file:../bitstring.org::*~numbits~][~numbits~:2]] *)
let numbits = function
| One x -> One.numbits x
| Many x -> Many.numbits x
(* ~numbits~:2 ends here *)
(* [[file:../bitstring.org::*~is_zero~][~is_zero~:2]] *)
let is_zero = function
| One x -> One.is_zero x
| Many x -> Many.is_zero x
| One x -> One.is_zero x
| Many x -> Many.is_zero x
(* ~is_zero~:2 ends here *)
(* [[file:../bitstring.org::*~neg~][~neg~:2]] *)
let neg = function
| One x -> One (One.neg x)
| Many x -> Many (Many.neg x)
| One x -> One (One.neg x)
| Many x -> Many (Many.neg x)
(* ~neg~:2 ends here *)
(* [[file:../bitstring.org::*~shift_left~][~shift_left~:2]] *)
let shift_left x i = match x with
| One x -> One (One.shift_left x i)
| Many x -> Many (Many.shift_left x i)
(* ~shift_left~:2 ends here *)
(* [[file:../bitstring.org::*~shift_right~][~shift_right~:2]] *)
let shift_right x i = match x with
| One x -> One (One.shift_right x i)
| Many x -> Many (Many.shift_right x i)
(* ~shift_right~:2 ends here *)
(* [[file:../bitstring.org::*~shift_left_one~][~shift_left_one~:2]] *)
let shift_left_one = function
| n when n < 64 -> fun i -> One (One.shift_left_one i)
| _ -> fun i -> Many (Many.shift_left_one i)
(* ~shift_left_one~:2 ends here *)
(* [[file:../bitstring.org::*~testbit~][~testbit~:2]] *)
let testbit = function
| One x -> One.testbit x
| Many x -> Many.testbit x
(* ~testbit~:2 ends here *)
(* [[file:../bitstring.org::*~logor~][~logor~:2]] *)
let logor a b =
match a,b with
| One a, One b -> One (One.logor a b)
| Many a, Many b -> Many (Many.logor a b)
| _ -> invalid_arg "Bitstring.logor"
(* ~logor~:2 ends here *)
(* [[file:../bitstring.org::*~logxor~][~logxor~:2]] *)
let logxor a b =
match a,b with
| One a, One b -> One (One.logxor a b)
| Many a, Many b -> Many (Many.logxor a b)
| _ -> invalid_arg "Bitstring.logxor"
(* ~logxor~:2 ends here *)
(* [[file:../bitstring.org::*~logand~][~logand~:2]] *)
let logand a b =
match a,b with
| One a, One b -> One (One.logand a b)
| Many a, Many b -> Many (Many.logand a b)
| _ -> invalid_arg "Bitstring.logand"
(* ~logand~:2 ends here *)
(* [[file:../bitstring.org::*~lognot~][~lognot~:2]] *)
let lognot = function
| One x -> One (One.lognot x)
| Many x -> Many (Many.lognot x)
(* ~lognot~:2 ends here *)
(* [[file:../bitstring.org::*~minus_one~][~minus_one~:2]] *)
let minus_one = function
| One x -> One (One.minus_one x)
| Many x -> Many (Many.minus_one x)
(* ~minus_one~:2 ends here *)
(* [[file:../bitstring.org::*~plus_one~][~plus_one~:2]] *)
let plus_one = function
| One x -> One (One.plus_one x)
| Many x -> Many (Many.plus_one x)
(* ~plus_one~:2 ends here *)
(* [[file:../bitstring.org::*~trailing_zeros~][~trailing_zeros~:2]] *)
let trailing_zeros = function
| One x -> One.trailing_zeros x
| Many x -> Many.trailing_zeros x
(* ~trailing_zeros~:2 ends here *)
(* [[file:../bitstring.org::*~hamdist~][~hamdist~:2]] *)
let hamdist a b = match a, b with
| One a, One b -> One.hamdist a b
| Many a, Many b -> Many.hamdist a b
| _ -> invalid_arg "Bitstring.hamdist"
(* ~hamdist~:2 ends here *)
(* [[file:../bitstring.org::*~popcount~][~popcount~:2]] *)
let popcount = function
| One x -> One.popcount x
| Many x -> Many.popcount x
(* ~popcount~:2 ends here *)
let pp ppf = function
| One x -> One.pp ppf x
| Many x -> Many.pp ppf x
(* [[file:../bitstring.org::*~to_list~][~to_list~:2]] *)
let rec to_list ?(accu=[]) = function
| t when (is_zero t) -> List.rev accu
| t -> let newlist =
@ -172,18 +206,9 @@ let rec to_list ?(accu=[]) = function
in
logand t @@ minus_one t
|> (to_list [@tailcall]) ~accu:newlist
(* ~to_list~:2 ends here *)
(** [permtutations m n] generates the list of all possible [n]-bit
strings with [m] bits set to 1.
Algorithm adapted from
{{:https://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation}
Bit twiddling hacks}.
Example:
{[
permtutations 2 4 = [ 0011 ; 0101 ; 0110 ; 1001 ; 1010 ; 1100 ]
]}
*)
(* [[file:../bitstring.org::*~permtutations~][~permtutations~:2]] *)
let permtutations m n =
let rec aux k u rest =
@ -201,6 +226,10 @@ let permtutations m n =
(aux [@tailcall]) (k-1) (logor t' t'') (u :: rest)
in
aux (Util.binom n m) (minus_one (shift_left_one n m)) []
(* ~permtutations~:2 ends here *)
(* [[file:../bitstring.org::*Printers][Printers:2]] *)
let pp ppf = function
| One x -> One.pp ppf x
| Many x -> Many.pp ppf x
(* Printers:2 ends here *)

244
common/lib/bitstring.mli Normal file
View File

@ -0,0 +1,244 @@
(* Type *)
(* [[file:../bitstring.org::*Type][Type:1]] *)
type t
(* Type:1 ends here *)
(* ~of_int~
*
* Creates a bit string from an ~int~. *)
(* [[file:../bitstring.org::*~of_int~][~of_int~:1]] *)
val of_int : int -> t
(* ~of_int~:1 ends here *)
(* ~of_z~
*
* Creates a bit string from an ~Z.t~ multi-precision integer. *)
(* [[file:../bitstring.org::*~of_z~][~of_z~:1]] *)
val of_z : Z.t -> t
(* ~of_z~:1 ends here *)
(* ~zero~
*
* ~zero n~ creates a zero bit string with ~n~ bits. *)
(* [[file:../bitstring.org::*~zero~][~zero~:1]] *)
val zero : int -> t
(* ~zero~:1 ends here *)
(* ~numbits~
*
* Returns the number of bits used to represent the bit string. *)
(* [[file:../bitstring.org::*~numbits~][~numbits~:1]] *)
val numbits : t -> int
(* ~numbits~:1 ends here *)
(* ~is_zero~
*
* True if all the bits of the bit string are zero. *)
(* [[file:../bitstring.org::*~is_zero~][~is_zero~:1]] *)
val is_zero : t -> bool
(* ~is_zero~:1 ends here *)
(* ~neg~
*
* Returns the negative of the integer interpretation of the bit string.
*
* #+begin_example
* neg (of_int x) = neg (of_int (-x))
* #+end_example *)
(* [[file:../bitstring.org::*~neg~][~neg~:1]] *)
val neg : t -> t
(* ~neg~:1 ends here *)
(* ~shift_left~
*
* ~shift_left t n~ returns a new bit strings with all the bits
* shifted ~n~ positions to the left. *)
(* [[file:../bitstring.org::*~shift_left~][~shift_left~:1]] *)
val shift_left : t -> int -> t
(* ~shift_left~:1 ends here *)
(* ~shift_right~
*
* ~shift_right t n~ returns a new bit strings with all the bits
* shifted ~n~ positions to the right. *)
(* [[file:../bitstring.org::*~shift_right~][~shift_right~:1]] *)
val shift_right : t -> int -> t
(* ~shift_right~:1 ends here *)
(* ~shift_left_one~
*
* ~shift_left_one size n~ returns a new bit strings with the ~n~-th
* bit set to one.
* It is equivalent as shifting ~1~ by ~n~ bits to the left.
* ~size~ is the total number of bits of the bit string. *)
(* [[file:../bitstring.org::*~shift_left_one~][~shift_left_one~:1]] *)
val shift_left_one : int -> int -> t
(* ~shift_left_one~:1 ends here *)
(* ~testbit~
*
* ~testbit t n~ is true if the ~n~-th bit of the bit string ~t~ is
* set to ~1~. *)
(* [[file:../bitstring.org::*~testbit~][~testbit~:1]] *)
val testbit : t -> int -> bool
(* ~testbit~:1 ends here *)
(* ~logor~
*
* Bitwise logical or. *)
(* [[file:../bitstring.org::*~logor~][~logor~:1]] *)
val logor : t -> t -> t
(* ~logor~:1 ends here *)
(* ~logxor~
*
* Bitwise logical exclusive or. *)
(* [[file:../bitstring.org::*~logxor~][~logxor~:1]] *)
val logxor : t -> t -> t
(* ~logxor~:1 ends here *)
(* ~logand~
*
* Bitwise logical and. *)
(* [[file:../bitstring.org::*~logand~][~logand~:1]] *)
val logand : t -> t -> t
(* ~logand~:1 ends here *)
(* ~lognot~
*
* Bitwise logical negation. *)
(* [[file:../bitstring.org::*~lognot~][~lognot~:1]] *)
val lognot : t -> t
(* ~lognot~:1 ends here *)
(* ~minus_one~
*
* Takes the integer representation of the bit string and removes one.
*
* #+begin_example
* minus_one (of_int 10) = of_int 9
* #+end_example *)
(* [[file:../bitstring.org::*~minus_one~][~minus_one~:1]] *)
val minus_one : t -> t
(* ~minus_one~:1 ends here *)
(* ~plus_one~
*
* Takes the integer representation of the bit string and adds one.
*
* #+begin_example
* plus_one (of_int 10) = of_int 11
* #+end_example *)
(* [[file:../bitstring.org::*~plus_one~][~plus_one~:1]] *)
val plus_one : t -> t
(* ~plus_one~:1 ends here *)
(* ~trailing_zeros~
*
* Returns the number of trailing zeros in the bit string. *)
(* [[file:../bitstring.org::*~trailing_zeros~][~trailing_zeros~:1]] *)
val trailing_zeros : t -> int
(* ~trailing_zeros~:1 ends here *)
(* ~hamdist~
*
* Returns the Hamming distance, i.e. the number of bits differing
* between two bit strings. *)
(* [[file:../bitstring.org::*~hamdist~][~hamdist~:1]] *)
val hamdist : t -> t -> int
(* ~hamdist~:1 ends here *)
(* ~popcount~
*
* Returns the number of bits set to one in the bit string. *)
(* [[file:../bitstring.org::*~popcount~][~popcount~:1]] *)
val popcount : t -> int
(* ~popcount~:1 ends here *)
(* ~to_list~
*
* Converts a bit string into a list of integers indicating the
* positions where the bits are set to ~1~. The first value for the
* position is not ~0~ but ~1~.
*
* #+begin_example
* Bitstring.to_list (of_int 5);;
* - : int list = [1; 3]
* #+end_example *)
(* [[file:../bitstring.org::*~to_list~][~to_list~:1]] *)
val to_list : ?accu:(int list) -> t -> int list
(* ~to_list~:1 ends here *)
(* ~permtutations~
*
* ~permtutations m n~ generates the list of all possible ~n~-bit
* strings with ~m~ bits set to ~1~.
* Algorithm adapted from [[https://graphics.stanford.edu/~seander/bithacks.html#NextBitPermutation][Bit twiddling hacks]].
*
* #+begin_example
* Bitstring.permtutations 2 4 |> List.map (fun x -> Format.asprintf "%a" Bitstring.pp x) ;;
* |> List.map (fun x -> Format.asprintf "%a" Bitstring.pp x) ;;
* - : string list =
* ["++--------------------------------------------------------------";
* "+-+-------------------------------------------------------------";
* "-++-------------------------------------------------------------";
* "+--+------------------------------------------------------------";
* "-+-+------------------------------------------------------------";
* "--++------------------------------------------------------------"]
* #+end_example *)
(* [[file:../bitstring.org::*~permtutations~][~permtutations~:1]] *)
val permtutations : int -> int -> t list
(* ~permtutations~:1 ends here *)
(* Printers
*
* Printers can print as a string (~pp_string~) or as an integer (~pp_int~). *)
(* [[file:../bitstring.org::*Printers][Printers:1]] *)
val pp : Format.formatter -> t -> unit
(* Printers:1 ends here *)

View File

@ -1,18 +1,20 @@
; name = name of the supermodule that will wrap all source files as submodules
; public_name = name of the library for ocamlfind and opam
(library
(name common)
(public_name qcaml.common)
(synopsis "General utilities used in all QCaml libraries.")
(libraries
str
zarith
getopt
)
(c_names
math_functions
)
(c_flags
(:standard)
(c_flags (:standard)
-Ofast -march=native -fPIC
)
(synopsis "General utilities used in all QCaml libraries."))
)

View File

@ -1,49 +1,81 @@
(* Tests header *)
(* [[file:../bitstring.org::*Tests header][Tests header:1]] *)
open Common.Bitstring
let check msg x = Alcotest.(check bool) msg true x
let test_one () =
let test_all () =
let x = 8745687 in
let one_x = One x in
let one_x = of_int x in
let z = Z.shift_left (Z.of_int x) 64 in
let many_x = of_z z in
(* Tests header:1 ends here *)
(* [[file:../bitstring.org::*~of_int~][~of_int~:3]] *)
Alcotest.(check bool) "of_x" true (one_x = (of_int x));
Alcotest.(check bool) "shift_left1" true (One (x lsl 3) = shift_left one_x 3);
Alcotest.(check bool) "shift_right1" true (One (x lsr 3) = shift_right one_x 3);
Alcotest.(check bool) "shift_left_one1" true (One (1 lsl 3) = shift_left_one 4 3);
Alcotest.(check bool) "testbit1" true (testbit (One 8) 3);
Alcotest.(check bool) "testbit2" false (testbit (One 8) 2);
Alcotest.(check bool) "testbit3" false (testbit (One 8) 4);
Alcotest.(check bool) "logor1" true (One (1 lor 2) = logor (One 1) (One 2));
Alcotest.(check bool) "logxor1" true (One (1 lxor 2) = logxor (One 1) (One 2));
Alcotest.(check bool) "logand1" true (One (1 land 2) = logand (One 1) (One 2));
Alcotest.(check bool) "to_list" true ([ 1 ; 3 ; 4 ; 6 ] = (to_list (One 45)))
(* ~of_int~:3 ends here *)
(* [[file:../bitstring.org::*~of_z~][~of_z~:3]] *)
Alcotest.(check bool) "of_z" true (one_x = (of_z (Z.of_int x)));
(* ~of_z~:3 ends here *)
(* [[file:../bitstring.org::*~shift_left~][~shift_left~:3]] *)
Alcotest.(check bool) "shift_left1" true (of_int (x lsl 3) = shift_left one_x 3);
Alcotest.(check bool) "shift_left2" true (of_z (Z.shift_left z 3) = shift_left many_x 3);
Alcotest.(check bool) "shift_left3" true (of_z (Z.shift_left z 100) = shift_left many_x 100);
(* ~shift_left~:3 ends here *)
(* [[file:../bitstring.org::*~shift_right~][~shift_right~:3]] *)
Alcotest.(check bool) "shift_right1" true (of_int (x lsr 3) = shift_right one_x 3);
Alcotest.(check bool) "shift_right2" true (of_z (Z.shift_right z 3) = shift_right many_x 3);
(* ~shift_right~:3 ends here *)
(* [[file:../bitstring.org::*~shift_left_one~][~shift_left_one~:3]] *)
Alcotest.(check bool) "shift_left_one1" true (of_int (1 lsl 3) = shift_left_one 4 3);
Alcotest.(check bool) "shift_left_one2" true (of_z (Z.shift_left Z.one 200) = shift_left_one 300 200);
(* ~shift_left_one~:3 ends here *)
(* [[file:../bitstring.org::*~testbit~][~testbit~:3]] *)
Alcotest.(check bool) "testbit1" true (testbit (of_int 8) 3);
Alcotest.(check bool) "testbit2" false (testbit (of_int 8) 2);
Alcotest.(check bool) "testbit3" false (testbit (of_int 8) 4);
Alcotest.(check bool) "testbit4" true (testbit (of_z (Z.of_int 8)) 3);
Alcotest.(check bool) "testbit5" false (testbit (of_z (Z.of_int 8)) 2);
Alcotest.(check bool) "testbit6" false (testbit (of_z (Z.of_int 8)) 4);
(* ~testbit~:3 ends here *)
(* [[file:../bitstring.org::*~logor~][~logor~:3]] *)
Alcotest.(check bool) "logor1" true (of_int (1 lor 2) = logor (of_int 1) (of_int 2));
Alcotest.(check bool) "logor2" true (of_z (Z.of_int (1 lor 2)) = logor (of_z Z.one) (of_z (Z.of_int 2)));
(* ~logor~:3 ends here *)
(* [[file:../bitstring.org::*~logxor~][~logxor~:3]] *)
Alcotest.(check bool) "logxor1" true (of_int (1 lxor 2) = logxor (of_int 1) (of_int 2));
Alcotest.(check bool) "logxor2" true (of_z (Z.of_int (1 lxor 2)) = logxor (of_z Z.one) (of_z (Z.of_int 2)));
(* ~logxor~:3 ends here *)
(* [[file:../bitstring.org::*~logand~][~logand~:3]] *)
Alcotest.(check bool) "logand1" true (of_int (1 land 3) = logand (of_int 1) (of_int 3));
Alcotest.(check bool) "logand2" true (of_z (Z.of_int (1 land 3)) = logand (of_z Z.one) (of_z (Z.of_int 3)));
(* ~logand~:3 ends here *)
(* [[file:../bitstring.org::*~to_list~][~to_list~:3]] *)
Alcotest.(check bool) "to_list" true ([ 1 ; 3 ; 4 ; 6 ] = (to_list (of_int 45)));
(* ~to_list~:3 ends here *)
(* [[file:../bitstring.org::*~permtutations~][~permtutations~:3]] *)
check "permutations"
(permtutations 2 4 = List.map of_int
[ 3 ; 5 ; 6 ; 9 ; 10 ; 12 ]);
(* ~permtutations~:3 ends here *)
(* Tests *)
let test_many () =
let x = 8745687 in
let z = Z.of_int x in
let one_x = One x in
let many_x = Many z in
Alcotest.(check bool) "of_z" true (one_x = (of_z z));
Alcotest.(check bool) "shift_left2" true (Many (Z.shift_left z 3) = shift_left many_x 3);
Alcotest.(check bool) "shift_left3" true (Many (Z.shift_left z 100) = shift_left many_x 100);
Alcotest.(check bool) "shift_right2" true (Many (Z.shift_right z 3) = shift_right many_x 3);
Alcotest.(check bool) "shift_left_one2" true (Many (Z.shift_left Z.one 200) = shift_left_one 300 200);
Alcotest.(check bool) "testbit4" true (testbit (Many (Z.of_int 8)) 3);
Alcotest.(check bool) "testbit5" false (testbit (Many (Z.of_int 8)) 2);
Alcotest.(check bool) "testbit6" false (testbit (Many (Z.of_int 8)) 4);
Alcotest.(check bool) "logor2" true (Many (Z.of_int (1 lor 2)) = logor (Many Z.one) (Many (Z.of_int 2)));
Alcotest.(check bool) "logxor2" true (Many (Z.of_int (1 lxor 2)) = logxor (Many Z.one) (Many (Z.of_int 2)));
Alcotest.(check bool) "logand2" true (Many (Z.of_int (1 land 2)) = logand (Many Z.one) (Many (Z.of_int 2)))
let test_permutations () =
check "permutations"
(permtutations 2 4 = List.map of_int
[ 3 ; 5 ; 6 ; 9 ; 10 ; 12 ])
(* [[file:../bitstring.org::*Tests][Tests:1]] *)
()
let tests = [
"One", `Quick, test_one;
"Many", `Quick, test_many;
"permutations", `Quick, test_permutations;
"all", `Quick, test_all;
]
(* Tests:1 ends here *)

View File

@ -1,7 +1,11 @@
(library
(name test_common)
(synopsis "Test for common library")
(libraries
alcotest
qcaml.common
)
(synopsis "Tests for common library"))
)