10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-12-22 04:13:33 +01:00

Simplified Localization

This commit is contained in:
Anthony Scemama 2020-07-12 01:30:00 +02:00
parent db658c2d9d
commit df59f1c07e
2 changed files with 150 additions and 316 deletions

View File

@ -67,7 +67,7 @@
(* 5. Fonction d'affichage *) (* 5. Fonction d'affichage *)
let methode = "Boys_er";; (* Method for th orbitals localization *) let methode = "Boys_er";; (* Method for th orbitals localization *)
let iteration = 10000;; (* Maximum number of iteration for each localization *) let iteration = 1000000;; (* Maximum number of iteration for each localization *)
let cc = 10e-6;; (* Convergence criterion *) let cc = 10e-6;; (* Convergence criterion *)
let pre_angle = 0.001;; (* Rotation of the matrix with a small angle to improve the convergence *) let pre_angle = 0.001;; (* Rotation of the matrix with a small angle to improve the convergence *)
let epsilon = 1.;; (* Rotation angle = angle /. epsilon, default value : epsilon = 1. *) let epsilon = 1.;; (* Rotation angle = angle /. epsilon, default value : epsilon = 1. *)
@ -79,18 +79,15 @@ let x_end = 1;; (* Choice of the x_end for the pi/sigma/end separation, size of
(* Choice of the separation type of orbitals *) (* Choice of the separation type of orbitals *)
(* For valence ones *) (* For valence ones *)
let type_separation_occu = "pi/sigma";; (* Separation of the pi and sigma orbitals *) type type_separation =
(*let type_separation_occu = "1/2";;*) (* Separation of the first and second half of the orbitals *) | Sigma_pi
(*let type_separation_occu = "pi/sigma/end";;*) (* Separation pi,(n-x_end) sigma and x_end sigma *) | Occ_vir
(*let type_separation_occu = "pi/1/2";;*) (* Separation pi, (n/2) first sigma and (n/2) last sigma *) | Custom of int list list
(*let type_separation_occu = "full";;*) (* Without separation *)
(* For occupied ones *) let string_of_separation = function
let type_separation_vir = "pi/sigma";; (* Separation of the pi and sigma orbitals *) | Sigma_pi -> "Sigma/pi"
(*let type_separation_vir = "1/2";;*) (* Separation of the first and second half of the orbitals *) | Occ_vir -> "Occ/Vir"
(*let type_separation_vir = "pi/sigma/end";;*) (* Separation pi,(n-x_end) sigma and x_end sigma *) | Custom _ -> "Custom"
(*let type_separation_vir = "pi/1/2";;*) (* Separation pi, (n/2) first sigma and (n/2) last sigma *)
(*let type_separation_vir = "full";;*) (* Without separation *)
open Lacaml.D open Lacaml.D
@ -107,10 +104,10 @@ type alphad = {
d : float; d : float;
} }
let localize mo_basis = let localize mo_basis separation =
let simulation = MOBasis.simulation mo_basis in let simulation = MOBasis.simulation mo_basis in
let nocc = let n_occ =
let elec = Simulation.electrons simulation let elec = Simulation.electrons simulation
in in
Electrons.n_alfa elec Electrons.n_alfa elec
@ -275,52 +272,54 @@ let localize mo_basis =
let multipoles = AOBasis.multipole ao_basis in let multipoles = AOBasis.multipole ao_basis in
let n_mo = Mat.dim2 m_C let n_mo = Mat.dim2 m_C
in in
let phi_x_phi = let x =
Multipole.matrix_x multipoles Multipole.matrix_x multipoles
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
in in
let phi_y_phi = let y =
Multipole.matrix_y multipoles Multipole.matrix_y multipoles
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
in in
let phi_z_phi = let z =
Multipole.matrix_z multipoles Multipole.matrix_z multipoles
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
in in
let phi_x2_phi = let r2 =
Multipole.matrix_x2 multipoles Multipole.matrix_r2 multipoles
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
in
let phi_y2_phi =
Multipole.matrix_y2 multipoles
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
in
let phi_z2_phi =
Multipole.matrix_z2 multipoles
|> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
in in
let m_b_0 = let m_b_0 =
let b_0 g h = Mat.init_cols n_mo n_mo (fun i j -> Mat.init_cols n_mo n_mo (fun i j ->
h.{i,i} +. h.{j,j} -. (g.{i,i}**2. +. g.{j,j}**2.)) r2.{i,i} +. r2.{j,j} -.
in (x.{i,i} *. x.{i,i} +. x.{j,j} *. x.{j,j} +.
Mat.add (b_0 phi_x_phi phi_x2_phi) (Mat.add (b_0 phi_y_phi phi_y2_phi) (b_0 phi_z_phi phi_z2_phi)) y.{i,i} *. y.{i,i} +. y.{j,j} *. y.{j,j} +.
z.{i,i} *. z.{i,i} +. z.{j,j} *. z.{j,j} )
)
in in
let m_beta = let m_beta =
let beta g = Mat.init_cols n_mo n_mo (fun i j -> Mat.init_cols n_mo n_mo (fun i j ->
(g.{i,i} -. g.{j,j})**2. -. 4. *. g.{i,j}**2.) let x' = (x.{i,i} -. x.{j,j})
and y' = (y.{i,i} -. y.{j,j})
and z' = (z.{i,i} -. z.{j,j})
in in
Mat.add (beta phi_x_phi) (Mat.add (beta phi_y_phi) (beta phi_z_phi)) x'*.x' +. y'*.y' +. z'*.z' -.
4. *. ( x.{i,j} *. x.{i,j} +.
y.{i,j} *. y.{i,j} +.
z.{i,j} *. z.{i,j} )
)
in in
let m_gamma = let m_gamma =
let gamma g = Mat.init_cols n_mo n_mo (fun i j -> Mat.init_cols n_mo n_mo (fun i j ->
4. *. g.{i,j} *. (g.{i,i} -. g.{j,j}) ) 4. *. ( x.{i,j} *. (x.{i,i} -. x.{j,j}) +.
in y.{i,j} *. (y.{i,i} -. y.{j,j}) +.
Mat.add (gamma phi_x_phi) (Mat.add (gamma phi_y_phi) (gamma phi_z_phi)) z.{i,j} *. (z.{i,i} -. z.{j,j}) )
)
in in
let m_theta = Mat.init_cols n_mo n_mo (fun i j -> let m_theta = Mat.init_cols n_mo n_mo (fun i j ->
if i = j if i <> j then
then 0. 0.25 *. atan2 m_gamma.{i,j} m_beta.{i,j}
else +. 0.25 *. atan2 m_gamma.{i,j} m_beta.{i,j}) else 0.
)
in in
let m_critere_B = Mat.init_cols n_mo n_mo (fun i j -> let m_critere_B = Mat.init_cols n_mo n_mo (fun i j ->
0.5 *. (m_b_0.{i,j} +. 0.25 *. ((1. -. cos(4. *. m_theta.{i,j})) *. m_beta.{i,j} +. sin(4. *. m_theta.{i,j}) *. m_gamma.{i,j}))) 0.5 *. (m_b_0.{i,j} +. 0.25 *. ((1. -. cos(4. *. m_theta.{i,j})) *. m_beta.{i,j} +. sin(4. *. m_theta.{i,j}) *. m_gamma.{i,j})))
@ -466,7 +465,7 @@ let localize mo_basis =
else +. 0.25 *. atan2 m_gamma.{i,j} m_beta.{i,j}) else +. 0.25 *. atan2 m_gamma.{i,j} m_beta.{i,j})
in in
let m_critere_B = Vec.init n_mo (fun i -> let m_critere_B = Vec.init n_mo (fun i ->
r2.{i,i} -. x.{i,i}**2. -. y.{i,i}**2. -. z.{i,i}**2.) r2.{i,i} -. x.{i,i}*.x.{i,i} -. y.{i,i}*.y.{i,i} -. z.{i,i}*.z.{i,i})
in m_theta, Vec.sum( m_critere_B) in m_theta, Vec.sum( m_critere_B)
in in
@ -512,11 +511,7 @@ let localize mo_basis =
(* 6. Norm of a matrix *) (* 6. Norm of a matrix *)
(* Matrix -> float *) (* Matrix -> float *)
let norm m = let norm m =
sqrt (Mat.syrk_trace m)
let vec_m = Mat.as_vec m in
let vec2 = Vec.sqr vec_m
in
sqrt(Vec.sum vec2)
in in
(* 7. Calculation of the max angle[-pi/.4 , pi/.4] and its indexes i and j in the matrix *) (* 7. Calculation of the max angle[-pi/.4 , pi/.4] and its indexes i and j in the matrix *)
@ -577,13 +572,9 @@ let localize mo_basis =
(* angle -> 2x2 rotation matrix *) (* angle -> 2x2 rotation matrix *)
(* float -> matrix *) (* float -> matrix *)
let f_R alpha = let f_R alpha =
[| [| cos alpha ; -. sin alpha |] ;
Mat.init_cols 2 2 (fun i j -> [| sin alpha ; cos alpha |] |]
if i=j |> Mat.of_array
then cos alpha
else if i>j
then sin alpha
else -. sin alpha )
in in
(* 9. Rotation matrix nxn *) (* 9. Rotation matrix nxn *)
@ -902,28 +893,6 @@ let localize mo_basis =
in in
(* Function to create a matrix from a list*)
(* Coefficient matrix n_ao x n_mo, list of orbitals -> matrix with these orbitals *)
(* matrix, integer list -> matrix*)
let create_mat mat lst =
let vec_of_mat = Mat.to_col_vecs mat in
let f a = vec_of_mat.(a-1) in
let vec_list = List.map f lst
in
Mat.of_col_vecs_list vec_list
in
(* List of the occupied MOs *)
let list_occ =
Util.list_range 1 nocc
in
(* List of the core MOs *)
let list_core =
Util.list_range 1 n_core
in
(* Function to create a list of pi MOs *) (* Function to create a list of pi MOs *)
(* Coefficient matrix n_ao x n_mo -> list of pi orbitals *) (* Coefficient matrix n_ao x n_mo -> list of pi orbitals *)
(* matrix -> integer list *) (* matrix -> integer list *)
@ -933,17 +902,17 @@ let localize mo_basis =
if j=1 && abs_float m_C.{i,j} < 1.e-8 if j=1 && abs_float m_C.{i,j} < 1.e-8
then 0. then 0.
else if j=1 else if j=1
then m_C.{i,j} then abs_float m_C.{i,j}
else if abs_float mat.{i,j-1} < 1.e-8 else if abs_float mat.{i,j-1} < 1.e-8
then 0. then 0.
else mat.{i,j-1}) else abs_float mat.{i,j-1})
in in
let vec = Mat.to_col_vecs m_pi in let vec = Mat.to_col_vecs m_pi in
(* TODO gemv *) (* TODO gemv *)
let vec_dot = Vec.init (Mat.dim2 mat) (fun i -> dot vec.(0) vec.(i)) in let vec_dot = Vec.init (Mat.dim2 mat) (fun i -> dot vec.(0) vec.(i)) in
let list_pi = let list_pi =
Util.list_range 1 (Mat.dim2 mat) Util.list_range 1 (Mat.dim2 mat)
|> List.map (fun i -> if vec_dot.{i} = 0. then i else 0) |> List.map (fun i -> if abs_float vec_dot.{i} = 0. then i else 0)
in in
let rec remove x = function let rec remove x = function
| [] -> [] | [] -> []
@ -954,22 +923,6 @@ let localize mo_basis =
remove 0 list_pi remove 0 list_pi
in in
(* Function to create a list of the (n-x_end) first MOs of a matrix *)
(* Coefficient matrix n_ao x n_mo -> list of the (n-x_end) first MOs of the matrix *)
(* matrix -> integer list *)
let list_x_end mat =
let n = Mat.dim2 mat in
Util.list_range 1 (n-x_end)
in
(* Function to create a list of the (n/2) first MOs of a matrix *)
(* Coefficient matrix n_ao x n_mo -> list of the (n/2) first MOs of the matrix *)
(* matrix -> integer list *)
let list_s_12 mat =
let n = Mat.dim2 mat in
Util.list_range 1 (n/2)
in
(* Function to assemble to matrix with the same number of line *) (* Function to assemble to matrix with the same number of line *)
(* Coefficient matrix n_ao x n, coefficient matrix n_ao x m -> Coefficient matrix n_ao x (n+m) *) (* Coefficient matrix n_ao x n, coefficient matrix n_ao x m -> Coefficient matrix n_ao x (n+m) *)
(* matrix, matrix -> matrix*) (* matrix, matrix -> matrix*)
@ -985,23 +938,22 @@ let localize mo_basis =
(* V. Calculation *) (* V. Calculation *)
(* 1. Caption *) (* 1. Caption *)
let text = "Method : " ^ methode ^ "; Separation type of the valence occupied MOs : " ^ type_separation_occu ^ "; Separation type of the virtual MOs : " ^ type_separation_vir ^ "; Max number of iteration : " ^ string_of_int(iteration) ^ "; cc : " ^ string_of_float(cc)^"; epsilon : "^string_of_float(epsilon)^"; charge : "^string_of_int(charge)^"; Rotation pre angle : "^string_of_float(pre_angle) let text = "Method : " ^ methode ^ "\nSeparation type : "
^ (string_of_separation separation)
^ "\nMax number of iterations : " ^ string_of_int(iteration) ^ "\ncc : "
^ string_of_float(cc)^"\nepsilon : "^string_of_float(epsilon)^"\ncharge : "
^ string_of_int(charge)^"\nRotation pre angle : "^string_of_float(pre_angle)
in in
let caption = "n Criterion max_angle norm_angle average_angle" let caption = "Criterion max_angle norm_angle average_angle"
in in
Printf.printf "%s\n" ""; Printf.printf "%s\n" "";
Printf.printf "%s\n" "Orbitals localization "; Printf.printf "%s\n" "Orbital localization";
Printf.printf "%s\n" ""; Printf.printf "%s\n" "";
Printf.printf "%s\n" text; Printf.printf "%s\n" text;
Printf.printf "%s\n" ""; Printf.printf "%s\n" "";
Printf.printf "%s\n" caption; Printf.printf "%s\n" caption;
Printf.printf "%s\n" ""; Printf.printf "%s\n" "";
(* Separation of the occupied and virtual MOs, valence and core MOs *)
let m_occ , m_vir = split_mat m_C list_occ in
let m_core, m_occu = split_mat m_occ list_core in
(* Localization function *) (* Localization function *)
(* Coefficient matrix n_ao x n_mo -> localized coefficient matrix n_ao x n_mo *) (* Coefficient matrix n_ao x n_mo -> localized coefficient matrix n_ao x n_mo *)
(* matrix -> matrix *) (* matrix -> matrix *)
@ -1020,215 +972,68 @@ let localize mo_basis =
else localise localisation new_mat methode epsilon iteration cc else localise localisation new_mat methode epsilon iteration cc
in in
(* Core MOs localization *)
let loc_m_core =
Printf.printf "%s\n" "I/III";
Printf.printf "%s\n" "Localization of core orbitals";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 m_core);
Printf.printf "%s\n" "";
f_localise m_core in (* Localization function with n separations expressed as a list of lists of
orbital indices *)
Printf.printf "%s\n" ""; let f_loc_list mat list_of_lists =
Printf.printf "%s\n" "End I/III"; let vec_list = Mat.to_col_vecs mat in
Printf.printf "%s\n" ""; list_of_lists
|> List.map (fun lst ->
(* Localization function without separation *) lst
let f_loc_assemble_1 mat = |> List.map (fun col -> vec_list.(col-1))
|> Mat.of_col_vecs_list
Printf.printf "%s\n" ""; |> f_localise
Printf.printf "%s\n" "Localization 1/1"; |> Mat.to_col_vecs_list
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat); )
|> List.concat
f_localise mat in |> Mat.of_col_vecs_list
Printf.printf "%s\n" "";
(* Localization function with 1 MOs separation *)
let f_loc_assemble_12 mat list_12 =
if List.length(list_12 mat) + List.length(miss_elem mat (list_12 mat)) <> (Mat.dim2 mat)
then Printf.printf "%s\n" "Bug : List length problem (list_12 or miss_elem list_12)";
let mat_1, mat_2 = split_mat mat (list_12 mat) in
Printf.printf "%s\n" "";
Printf.printf "%s\n" "Localization 1/2";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1);
let m_loc_1 = f_localise mat_1 in
Printf.printf "%s\n" "";
Printf.printf "%s\n" "Localization 2/2";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2);
let m_loc_2 = f_localise mat_2 in
Printf.printf "%s\n" "";
assemble m_loc_1 m_loc_2
in in
(* Localization function with 2 MOs separations *) let n_mo = Mat.dim2 m_C in
let f_loc_assemble_123 mat list_12 list_2ab = let list_full = Util.list_range 1 n_mo in
let list_core = Util.list_range 1 n_core in
let list_pi = list_pi m_C in
let list_sigma = List.filter (fun i -> not (List.mem i list_pi)) list_full in
let list_pi_occ = List.filter (fun i -> i > n_core && i <= n_occ) list_pi in
let list_sigma_occ = List.filter (fun i -> i > n_core && i <= n_occ) list_sigma in
let list_pi_vir = List.filter (fun i -> i > n_occ) list_pi in
let list_sigma_vir = List.filter (fun i -> i > n_occ) list_sigma in
let list_occ = Util.list_range (n_core+1) n_occ in
let list_vir = Util.list_range (n_occ+1) n_mo in
if List.length(list_12 mat) + List.length(miss_elem mat (list_12 mat)) <> (Mat.dim2 mat) Printf.printf "Orbital lists:";
then Printf.printf "%s\n" "Bug : List length problem (list_12 or miss_elem list_12)"; Printf.printf "\nCore: [";
List.iter (fun i -> Printf.printf "%d," i) list_core;
Printf.printf "\b]\nOccupied: [";
List.iter (fun i -> Printf.printf "%d," i) list_occ;
Printf.printf "\b]\nVirtual: [";
List.iter (fun i -> Printf.printf "%d," i) list_vir;
Printf.printf "\b]\nSigma occ: [";
List.iter (fun i -> Printf.printf "%d," i) list_sigma_occ;
Printf.printf "\b]\nPi occ: [";
List.iter (fun i -> Printf.printf "%d," i) list_pi_occ;
Printf.printf "\b]\nSigma vir: [";
List.iter (fun i -> Printf.printf "%d," i) list_sigma_vir;
Printf.printf "\b]\nPi vir: [";
List.iter (fun i -> Printf.printf "%d," i) list_pi_vir;
Printf.printf "\b]\n\n";
let mat_1, mat_2 = split_mat mat (list_12 mat) in (* Separation of the occupied and virtual MOs, valence and core MOs *)
let m_occ , m_vir = split_mat m_C list_occ in
let m_core, m_occu = split_mat m_occ list_core in
if List.length(list_2ab mat_2) + List.length(miss_elem mat_2 (list_2ab mat_2)) <> (Mat.dim2 mat_2) let m_assemble_loc =
then Printf.printf "%s\n" "Bug : List length problem (list_2ab or miss_elem list_2ab)"; let list_of_lists =
match separation with
let mat_2a, mat_2b = split_mat mat_2 (list_2ab mat_2) in | Occ_vir -> [ list_core ; list_occ ; list_vir ]
| Sigma_pi -> [ list_core ; list_sigma_occ ; list_pi_occ ; list_pi_vir ; list_sigma_vir ]
Printf.printf "%s\n" ""; | Custom l -> l
Printf.printf "%s\n" "Localization 1/3"; in
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1); f_loc_list m_C list_of_lists
let m_loc_1 = f_localise mat_1 in
Printf.printf "%s\n" "";
Printf.printf "%s\n" "Localization 2/3";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2a);
let m_loc_2a = f_localise mat_2a in
Printf.printf "%s\n" "";
Printf.printf "%s\n" "Localization 3/3";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2b);
let m_loc_2b = f_localise mat_2b in
Printf.printf "%s\n" "";
let m_loc_2ab = assemble m_loc_2a m_loc_2b
in in
assemble m_loc_1 m_loc_2ab let m_assemble_occ, m_assemble_vir = split_mat m_assemble_loc list_occ in
in let m_assemble_core, m_assemble_occu = split_mat m_assemble_occ list_core in
(* Localization function with 3 MOs separations *)
let f_loc_assemble_1234 mat list_12 list_1ab list_2ab =
if List.length(list_12 mat) + List.length(miss_elem mat (list_12 mat)) <> (Mat.dim2 mat)
then Printf.printf "%s\n" "Bug : List length problem (list_12 or miss_elem list_12)";
let mat_1, mat_2 = split_mat mat (list_12 mat) in
if List.length(list_1ab mat_1) + List.length(miss_elem mat (list_1ab mat_1)) <> (Mat.dim2 mat_1)
then Printf.printf "%s\n" "Bug : List length problem (list_1ab or miss_elem list_1ab)";
let mat_1a, mat_1b = split_mat mat_1 (list_1ab mat_1) in
if List.length(list_2ab mat_2) + List.length(miss_elem mat (list_2ab mat_1)) <> (Mat.dim2 mat_2)
then Printf.printf "%s\n" "Bug : List length problem (list_2ab or miss_elem list_2ab)";
let mat_2a, mat_2b = split_mat mat_2 (list_2ab mat_2) in
Printf.printf "%s\n" "";
Printf.printf "%s\n" "Localization 1/4";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1a);
let m_loc_1a = f_localise mat_1a in
Printf.printf "%s\n" "";
Printf.printf "%s\n" "Localization 2/4";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1b);
let m_loc_1b = f_localise mat_1b in
Printf.printf "%s\n" "";
Printf.printf "%s\n" "Localization 3/4";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2a);
let m_loc_2a = f_localise mat_2a in
Printf.printf "%s\n" "";
Printf.printf "%s\n" "Localization 4/4";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2b);
let m_loc_2b = f_localise mat_2b in
Printf.printf "%s\n" "";
let m_loc_1ab = assemble m_loc_1a m_loc_1b in
let m_loc_2ab = assemble m_loc_2a m_loc_2b
in
assemble m_loc_1ab m_loc_2ab
in
(* Localization function with 4 separations "by hands" *)
let f_loc_assemble_main mat list_1 list_2 list_3 list_4 =
if (List.length(list_1) + List.length(list_2) + List.length(list_3) + List.length(list_4)) <> (Mat.dim2 mat)
then Printf.printf "%s\n" "Bug : List length problem";
let mat_1 = create_mat mat list_1 in
let mat_2 = create_mat mat list_2 in
let mat_3 = create_mat mat list_3 in
let mat_4 = create_mat mat list_4 in
Printf.printf "%s\n" "";
Printf.printf "%s\n" "Localization 1/4";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1);
let loc_mat_1 = f_localise mat_1 in
Printf.printf "%s\n" "";
Printf.printf "%s\n" "Localization 2/4";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2);
let loc_mat_2 = f_localise mat_2 in
Printf.printf "%s\n" "";
Printf.printf "%s\n" "Localization 3/4";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_3);
let loc_mat_3 = f_localise mat_3 in
Printf.printf "%s\n" "";
Printf.printf "%s\n" "Localization 4/4";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_4);
let loc_mat_4 = f_localise mat_4
in
Printf.printf "%s\n" "";
assemble (assemble loc_mat_1 loc_mat_2) (assemble loc_mat_3 loc_mat_4)
in
(* Pattern matching for the separation type of the occupied MOs *)
let m_assemble_occ, m_assemble_occu =
let m_assemble_occu =
Printf.printf "%s\n" "II/III";
Printf.printf "%s\n" "Localization of valence orbitals";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 m_occu);
match type_separation_occu with
| "full" -> let m_assemble_occu = f_loc_assemble_1 m_occu in m_assemble_occu
| "pi/sigma" -> let m_assemble_occu = f_loc_assemble_12 m_occu list_pi in m_assemble_occu
| "pi/sigma/end" -> let m_assemble_occu = f_loc_assemble_123 m_occu list_pi list_x_end in m_assemble_occu
| "pi/1/2" -> let m_assemble_occu = f_loc_assemble_123 m_occu list_pi list_s_12 in m_assemble_occu
| "1/2" -> let m_assemble_occu = f_loc_assemble_12 m_occu list_s_12 in m_assemble_occu
| "pi1/pi2/1/2" -> let m_assemble_occu = f_loc_assemble_1234 m_occu list_pi list_s_12 list_s_12 in m_assemble_occu
| "By_hands" -> let m_assemble_occu = f_loc_assemble_main m_occu (miss_elem m_occ []) [] [] [] in m_assemble_occu
| _ -> invalid_arg "Unknown separation type of valence orbitals"
in
Printf.printf "%s\n" "End II/III";
Printf.printf "%s\n" "";
(assemble loc_m_core m_assemble_occu, m_assemble_occu)
in
(* Pattern matching for the separation type of the virtual MOs *)
let m_assemble_vir =
let m_assemble_vir =
Printf.printf "%s\n" "III/III";
Printf.printf "%s\n" "Localization of virtual orbitals";
Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 m_vir);
match type_separation_vir with
| "full" -> let m_assemble_vir = f_loc_assemble_1 m_vir in m_assemble_vir
| "pi/sigma" -> let m_assemble_vir = f_loc_assemble_12 m_vir list_pi in m_assemble_vir
| "pi/sigma/end" -> let m_assemble_vir = f_loc_assemble_123 m_vir list_pi list_x_end in m_assemble_vir
| "pi/1/2" -> let m_assemble_vir = f_loc_assemble_123 m_vir list_pi list_s_12 in m_assemble_vir
| "1/2" -> let m_assemble_vir = f_loc_assemble_12 m_vir list_s_12 in m_assemble_vir
| "pi1/pi2/1/2" -> let m_assemble_vir = f_loc_assemble_1234 m_vir list_pi list_s_12 list_s_12 in m_assemble_vir
| "By_hands" -> let m_assemble_vir = f_loc_assemble_main m_vir (miss_elem m_vir []) [] [] [] in m_assemble_vir
| _ -> invalid_arg "Unknown separation type of virtual orbitals"
in
Printf.printf "%s\n" "End III/III";
Printf.printf "%s\n" "";
m_assemble_vir
in
(* Tack occupied and virtual MOs together*)
let m_assemble_loc = assemble m_assemble_occ m_assemble_vir
in
(* VI. Analysis *) (* VI. Analysis *)
@ -1337,6 +1142,7 @@ let localize mo_basis =
in in
"Average : "^string_of_float(average)^"; Median : "^string_of_float(median)^"; Variance : "^string_of_float(variance)^"; Standard deviation : "^string_of_float(stand_dev) "Average : "^string_of_float(average)^"; Median : "^string_of_float(median)^"; Variance : "^string_of_float(variance)^"; Standard deviation : "^string_of_float(stand_dev)
in in
(* Display the numer of MOs *) (* Display the numer of MOs *)
(* Coefficient matrix n_ao x n_mo -> string *) (* Coefficient matrix n_ao x n_mo -> string *)
(* matrix -> string *) (* matrix -> string *)
@ -1345,19 +1151,20 @@ let localize mo_basis =
(* Display *) (* Display *)
Printf.printf "%s\n" ""; Printf.printf "%s\n" "";
Printf.printf "%s\n" (n_orb m_C); Printf.printf "%s\n" (n_orb m_C);
Printf.printf "%s %i\n" "Number of pi orbitals : " (List.length (list_pi m_C)); Printf.printf "%s %i\n" "Number of pi orbitals : " (List.length list_pi );
Printf.printf "%s %i\n" "Number of occupied pi orbitals : " (List.length (list_pi m_occ)); Printf.printf "%s %i\n" "Number of occupied pi orbitals : " (List.length list_pi_occ );
Printf.printf "%s %i\n" "Number of virtual pi orbitals : " (List.length (list_pi m_vir)); Printf.printf "%s %i\n" "Number of virtual pi orbitals : " (List.length list_pi_vir );
Printf.printf "%s %i\n" "Number of sigma orbitals : " (List.length (miss_elem m_C (list_pi m_C))); Printf.printf "%s %i\n" "Number of sigma orbitals : " (List.length list_sigma);
Printf.printf "%s %i\n" "Number of occupied sigma orbitals : " (List.length (miss_elem m_occ (list_pi m_occ))); Printf.printf "%s %i\n" "Number of occupied sigma orbitals : " (List.length list_sigma_occ);
Printf.printf "%s %i\n" "Number of virtual sigma orbitals : " (List.length (miss_elem m_vir (list_pi m_vir))); Printf.printf "%s %i\n" "Number of virtual sigma orbitals : " (List.length list_sigma_vir);
Printf.printf "%s\n" ""; Printf.printf "%s\n" "";
Printf.printf "%s %s\n" "All MOs before the localization" (analyse m_C); Printf.printf "%s %s\n" "All MOs before the localization" (analyse m_C);
Printf.printf "%s %s\n" "All MOs after the localization" (analyse m_assemble_loc); Printf.printf "%s %s\n" "All MOs after the localization" (analyse m_assemble_loc);
Printf.printf "%s\n" ""; Printf.printf "%s\n" "";
Util.debug_matrix "Distribution of the spatial extent, before localization / sorting before localization / after localization / sorting after localization" (assemble(m_distribution m_C) (m_distribution m_assemble_loc)); Util.debug_matrix "Distribution of the spatial extent, before localization / sorting before localization / after localization / sorting after localization"
(assemble(m_distribution m_C) (m_distribution m_assemble_loc));
Printf.printf "%s\n" ""; Printf.printf "%s\n" "";
Printf.printf "%s %s\n" "Occupied orbitals : " (n_orb m_occ); Printf.printf "%s %s\n" "Occupied orbitals : " (n_orb m_occ);
@ -1368,7 +1175,7 @@ let localize mo_basis =
Printf.printf "%s\n" ""; Printf.printf "%s\n" "";
Printf.printf "%s %s\n" "Core orbitals : " (n_orb m_core); Printf.printf "%s %s\n" "Core orbitals : " (n_orb m_core);
Printf.printf "%s %s\n" "Core orbitalses before localization : " (analyse m_core); Printf.printf "%s %s\n" "Core orbitalses before localization : " (analyse m_core);
Printf.printf "%s %s\n" "Core orbitals after localization : " (analyse loc_m_core); Printf.printf "%s %s\n" "Core orbitals after localization : " (analyse m_assemble_core);
Printf.printf "%s\n" ""; Printf.printf "%s\n" "";
Printf.printf "%s\n" ""; Printf.printf "%s\n" "";

View File

@ -63,6 +63,10 @@ let () =
arg=With_arg "<string>"; arg=With_arg "<string>";
doc="Name of the EZFIO directory containing MOs"; } ; doc="Name of the EZFIO directory containing MOs"; } ;
{ short='s' ; long="separation" ; opt=Optional;
arg=With_arg "<string>";
doc="Type of separation: [ov: occ/vir | sp: sigma/pi | custom] "; } ;
] ]
end; end;
@ -87,6 +91,29 @@ let () =
let output_filename = Util.of_some @@ Command_line.get "output" in let output_filename = Util.of_some @@ Command_line.get "output" in
let separation =
match Command_line.get "separation" with
| None
| Some "ov" -> Localisation.Occ_vir
| Some "sp" -> Localisation.Sigma_pi
| Some "custom" ->
let list_of_lists =
print_endline "Enter ranges, one per line:";
let rec loop accu =
try
let r =
input_line stdin
|> Range.of_string
|> Range.to_int_list
in
loop (r::accu)
with End_of_file -> List.rev accu
in loop []
in
Localisation.Custom list_of_lists
| _ -> invalid_arg "separation"
in
(* II : Hartree-Fock *) (* II : Hartree-Fock *)
@ -114,7 +141,7 @@ let () =
|> MOBasis.of_hartree_fock |> MOBasis.of_hartree_fock
in in
let local_mos = Localisation.localize mo_basis in let local_mos = Localisation.localize mo_basis separation in
let oc = open_out output_filename in let oc = open_out output_filename in
Printf.fprintf oc "[\n"; Printf.fprintf oc "[\n";