10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-06 22:23:42 +01:00

Finished common in org-mode

This commit is contained in:
Anthony Scemama 2020-12-28 01:08:55 +01:00
parent 36e7dbc7bd
commit d2e7848de2
28 changed files with 2155 additions and 728 deletions

View File

@ -52,12 +52,12 @@ This directory contains many utility functions used by all the other directories
*** Extra C files *** Extra C files
The ~math_functions~ file contains small C snippets to add missing The ~util.c~ file contains small C snippets to add missing
functionalities to OCaml, such as support for the ~popcnt~ instruction. functionalities to OCaml, such as support for the ~popcnt~ instruction.
#+begin_src elisp :tangle (org-entry-get nil "dune" t) #+begin_src elisp :tangle (org-entry-get nil "dune" t)
(c_names (c_names
math_functions util
) )
(c_flags (:standard) (c_flags (:standard)
-Ofast -march=native -fPIC -Ofast -march=native -fPIC

View File

@ -11,7 +11,7 @@
) )
(c_names (c_names
math_functions util
) )
(c_flags (:standard) (c_flags (:standard)
-Ofast -march=native -fPIC -Ofast -march=native -fPIC

View File

@ -1,85 +0,0 @@
#include <math.h>
#include <caml/mlvalues.h>
#include <caml/alloc.h>
CAMLprim value erf_float_bytecode(value x)
{
return copy_double(erf(Double_val(x)));
}
CAMLprim double erf_float(double x)
{
return erf(x);
}
CAMLprim value erfc_float_bytecode(value x)
{
return copy_double(erfc(Double_val(x)));
}
CAMLprim double erfc_float(double x)
{
return erfc(x);
}
CAMLprim value gamma_float_bytecode(value x)
{
return copy_double(tgamma(Double_val(x)));
}
CAMLprim double gamma_float(double x)
{
return tgamma(x);
}
#include <stdio.h>
CAMLprim int32_t popcnt(int64_t i)
{
return __builtin_popcountll (i);
}
CAMLprim value popcnt_bytecode(value i)
{
return caml_copy_int32(__builtin_popcountll (Int64_val(i)));
}
CAMLprim int32_t trailz(int64_t i)
{
return __builtin_ctzll (i);
}
CAMLprim value trailz_bytecode(value i)
{
return caml_copy_int32(__builtin_ctzll (Int64_val(i)));
}
CAMLprim int32_t leadz(int64_t i)
{
return __builtin_clzll(i);
}
CAMLprim value leadz_bytecode(value i)
{
return caml_copy_int32(__builtin_clzll (Int64_val(i)));
}
#include <unistd.h>
CAMLprim value unix_vfork(value unit)
{
int ret;
ret = vfork();
return Val_int(ret);
}

View File

@ -1,5 +1,29 @@
type t = { x: int ; y : int ; z : int ; tot : int }
(* ~tot~ always contains ~x+y+z~. *)
(* [[file:../powers.org::*Type][Type:2]] *)
type t = {
x : int ;
y : int ;
z : int ;
tot : int ;
}
(* Type:2 ends here *)
(* #+begin_example
* Powers.of_int_tuple (2,3,1);;
* - : Powers.t = {Qcaml.Common.Powers.x = 2; y = 3; z = 1; tot = 6}
*
* Powers.(to_int_tuple (of_int_tuple (2,3,1)));;
* - : int * int * int = (2, 3, 1)
* #+end_example *)
(* [[file:../powers.org::*Conversions][Conversions:2]] *)
let of_int_tuple t = let of_int_tuple t =
let result = let result =
match t with match t with
@ -12,8 +36,30 @@ let of_int_tuple t =
invalid_arg (__FILE__^": of_int_tuple"); invalid_arg (__FILE__^": of_int_tuple");
result result
let to_int_tuple { x ; y ; z ; _ } = (x,y,z)
let to_int_tuple { x ; y ; z ; _ } = (x,y,z)
(* Conversions:2 ends here *)
(* | ~get~ | Returns the value of the power for $x$, $y$ or $z$
* | ~incr~ | Returns a new ~Powers.t~ with the power on the given axis incremented |
* | ~decr~ | Returns a new ~Powers.t~ with the power on the given axis decremented. As opposed to ~of_int_tuple~, the values may become negative|
*
* #+begin_example
* Powers.get Coordinate.Y (Powers.of_int_tuple (2,3,1));;
* - : int = 3
*
* Powers.incr Coordinate.Y (Powers.of_int_tuple (2,3,1));;
* - : Powers.t = {Qcaml.Common.Powers.x = 2; y = 4; z = 1; tot = 7}
*
* Powers.decr Coordinate.Y (Powers.of_int_tuple (2,3,1));;
* - : Powers.t = {Qcaml.Common.Powers.x = 2; y = 2; z = 1; tot = 5}
* #+end_example *)
(* [[file:../powers.org::*Operations][Operations:2]] *)
let get coord t = let get coord t =
match coord with match coord with
| Coordinate.X -> t.x | Coordinate.X -> t.x
@ -31,6 +77,9 @@ let decr coord t =
| Coordinate.X -> let r = t.x-1 in { t with x = r ; tot = t.tot-1 } | Coordinate.X -> let r = t.x-1 in { t with x = r ; tot = t.tot-1 }
| Coordinate.Y -> let r = t.y-1 in { t with y = r ; tot = t.tot-1 } | Coordinate.Y -> let r = t.y-1 in { t with y = r ; tot = t.tot-1 }
| Coordinate.Z -> let r = t.z-1 in { t with z = r ; tot = t.tot-1 } | Coordinate.Z -> let r = t.z-1 in { t with z = r ; tot = t.tot-1 }
(* Operations:2 ends here *)
(* [[file:../powers.org::*Printers][Printers:2]] *)
let pp ppf t =
Format.fprintf ppf "@[x^%d + y^%d + z^%d@]" t.x t.y t.z
(* Printers:2 ends here *)

View File

@ -1,57 +1,35 @@
(** Contains powers of x, y and z describing the polynomials in atomic basis sets. *) (* Type *)
(* [[file:../powers.org::*Type][Type:1]] *)
type t = private { type t = private {
x : int ; x : int ;
y : int ; y : int ;
z : int ; z : int ;
tot : int ; (* x + y + z *) tot : int ;
} }
(* Type:1 ends here *)
(* Conversions *)
(* [[file:../powers.org::*Conversions][Conversions:1]] *)
val of_int_tuple : int * int * int -> t val of_int_tuple : int * int * int -> t
(** Example:
[of_int_tuple (2,3,1) -> { x=2 ; y=3 ; z=1 ; tot=6 }]
@raise Invalid_argument if x, y or z < 0.
*)
val to_int_tuple : t -> int * int * int val to_int_tuple : t -> int * int * int
(** Example: (* Conversions:1 ends here *)
[to_int_tuple { x=2 ; y=3 ; z=1 ; tot=6 } -> (2,3,1) ]
*) (* Operations *)
(* [[file:../powers.org::*Operations][Operations:1]] *)
val get : Coordinate.axis -> t -> int val get : Coordinate.axis -> t -> int
(** Example:
[Powers.get Coordinate.Y { x=2 ; y=3 ; z=1 ; tot=6 } -> 3]
*)
val incr : Coordinate.axis -> t -> t val incr : Coordinate.axis -> t -> t
(** Returns a new {!Powers.t} with the power on the given axis incremented.
Example:
{[
Powers.incr Coordinate.Y { x=2 ; y=3 ; z=1 ; tot=6 } ->
{ x=2 ; y=4 ; z=1 ; tot=7 }
]}
*)
val decr : Coordinate.axis -> t -> t val decr : Coordinate.axis -> t -> t
(** Returns a new {!Powers.t} with the power on the given axis decremented. (* Operations:1 ends here *)
As opposed to {!of_int_tuple}, the values may become negative.
Example: (* Printers *)
{[
Powers.incr Coordinate.Y { x=2 ; y=3 ; z=1 ; tot=6 } ->
{ x=2 ; y=2 ; z=1 ; tot=5 }
]}
*)
(* [[file:../powers.org::*Printers][Printers:1]] *)
val pp : Format.formatter -> t -> unit
(* Printers:1 ends here *)

View File

@ -1,6 +1,12 @@
let name = "QCaml"
(* | ~root~ | Path to the QCaml source directory |
* | ~name~ | ~"QCaml"~ | *)
(* [[file:../qcaml.org::*QCaml][QCaml:2]] *)
let name = "QCaml"
let root = let root =
let rec chop = function let rec chop = function
| [] -> [] | [] -> []
@ -12,6 +18,4 @@ let root =
|> chop |> chop
|> List.rev |> List.rev
|> String.concat Filename.dir_sep |> String.concat Filename.dir_sep
(* QCaml:2 ends here *)

View File

@ -1,6 +1,12 @@
(* QCaml
* :PROPERTIES:
* :header-args: :noweb yes :comments both
* :END:
*
* QCaml-specific parameters *)
val name : string
(** Name of the QCaml source directory on the file system. *)
(* [[file:../qcaml.org::*QCaml][QCaml:1]] *)
val root : string val root : string
(** Path to the QCaml source directory. *) val name : string
(* QCaml:1 ends here *)

View File

@ -1,5 +1,8 @@
(* [[file:../range.org::*Type][Type:2]] *)
type t = int list type t = int list
(* Type:2 ends here *)
(* [[file:../range.org::*Conversion][Conversion:2]] *)
let to_int_list r = r let to_int_list r = r
let expand_range r = let expand_range r =
@ -38,9 +41,9 @@ let to_string l =
(List.map string_of_int l (List.map string_of_int l
|> String.concat ",") ^ |> String.concat ",") ^
"]" "]"
(* Conversion:2 ends here *)
(* [[file:../range.org::*Printers][Printers:2]] *)
let pp ppf t = let pp ppf t =
Format.fprintf ppf "@[%s@]" (to_string t) Format.fprintf ppf "@[%s@]" (to_string t)
(* Printers:2 ends here *)

View File

@ -1,30 +1,22 @@
(** A range is a sorted list of integers in an interval. (* Type *)
{[ "[36-53,72-107,126-131]" ]}
represents the list of integers
{[ [ 37 ; 37 ; 38 ; ... ; 52 ; 53 ; 72 ; 73 ; ... ; 106 ; 107 ; 126 ; 127 ; ...
; 130 ; 131 ] ]}
*)
(* [[file:../range.org::*Type][Type:1]] *)
type t type t
(* Type:1 ends here *)
(* Conversion *)
(* [[file:../range.org::*Conversion][Conversion:1]] *)
val of_string : string -> t val of_string : string -> t
(** Create from a string:
- "[a-b]" : range between a and b (included)
- "[a]" : the list with only one integer a
- "a" : equivalent to "[a]"
*)
val to_string : t -> string val to_string : t -> string
(** String representation. *)
val to_int_list : t -> int list val to_int_list : t -> int list
(** Transform into a list of ints. *) (* Conversion:1 ends here *)
(** {2 Printers} *) (* Printers *)
(* [[file:../range.org::*Printers][Printers:1]] *)
val pp : Format.formatter -> t -> unit val pp : Format.formatter -> t -> unit
(* Printers:1 ends here *)

View File

@ -1,47 +1,32 @@
(** Electron spin *)
(* Note :
* ~Alfa~ if written with an 'f' instead of 'ph' because it has the same number of
* letters as ~Beta~, so the alignment of the code is nicer. *)
(* [[file:../spin.org::*Type][Type:2]] *)
type t = (* m_s *) type t = (* m_s *)
| Alfa (* {% $m_s = +1/2$ %} *) | Alfa (* {% $m_s = +1/2$ %} *)
| Beta (* {% $m_s = -1/2$ %} *) | Beta (* {% $m_s = -1/2$ %} *)
(* Type:2 ends here *)
(* Returns the opposite spin *)
(* [[file:../spin.org::*Functions][Functions:2]] *)
let other = function let other = function
| Alfa -> Beta | Alfa -> Beta
| Beta -> Alfa | Beta -> Alfa
(* let to_string = function
let half = 1. /. 2. | Alfa -> "Alpha"
| Beta -> "Beta "
(* Functions:2 ends here *)
(* [[file:../spin.org::*Printers][Printers:2]] *)
(** {% $\alpha(m_s)$ %} *) let pp ppf t =
let alfa = function Format.fprintf ppf "@[%s@]" (to_string t)
| n, Alfa -> n (* Printers:2 ends here *)
| _, Beta -> 0.
(** {% $\beta(m_s)$ %} *)
let beta = function
| _, Alfa -> 0.
| n, Beta -> n
(** {% $S_z(m_s)$ %} *)
let s_z = function
| n, Alfa -> half *. n, Alfa
| n, Beta -> -. half *. n, Beta
let s_plus = function
| n, Beta -> n , Alfa
| _, Alfa -> 0., Alfa
let s_minus = function
| n, Alfa -> n , Beta
| _, Beta -> 0., Beta
let ( ++ ) (n, t) (m,t) =
(m. +n.)
let s2 s =
s_minus @@ s_plus s +.
s_z s +.
s_z @@ s_z s
*)

View File

@ -1,13 +1,20 @@
(** Electron spin. (* Type *)
Note :
[Alfa] if written with an 'f' instead of 'ph' because it has the same number of
letters as [Beta], so the alignment of the code is nicer.
*)
(* [[file:../spin.org::*Type][Type:1]] *)
type t = Alfa | Beta type t = Alfa | Beta
(* Type:1 ends here *)
(* Functions *)
(* [[file:../spin.org::*Functions][Functions:1]] *)
val other : t -> t val other : t -> t
(* Functions:1 ends here *)
(* Printers *)
(* [[file:../spin.org::*Printers][Printers:1]] *)
val pp : Format.formatter -> t -> unit
(* Printers:1 ends here *)

97
common/lib/util.c Normal file
View File

@ -0,0 +1,97 @@
/* External C functions */
/* | ~erf_float~ | Error function ~erf~ from =libm= | */
/* | ~erfc_float~ | Complementary error function ~erfc~ from =libm= | */
/* | ~gamma_float~ | Gamma function ~gamma~ from =libm= | */
/* | ~popcnt~ | ~popcnt~ instruction | */
/* | ~trailz~ | ~ctz~ instruction | */
/* | ~leadz~ | ~bsf~ instruction | */
/* [[file:../util.org::*External C functions][External C functions:1]] */
#include <math.h>
#include <caml/mlvalues.h>
#include <caml/alloc.h>
/* External C functions:1 ends here */
/* Erf */
/* [[file:../util.org::*Erf][Erf:1]] */
CAMLprim value erf_float_bytecode(value x) {
return copy_double(erf(Double_val(x)));
}
CAMLprim double erf_float(double x) {
return erf(x);
}
/* Erf:1 ends here */
/* Erfc */
/* [[file:../util.org::*Erfc][Erfc:1]] */
CAMLprim value erfc_float_bytecode(value x) {
return copy_double(erfc(Double_val(x)));
}
CAMLprim double erfc_float(double x) {
return erfc(x);
}
/* Erfc:1 ends here */
/* Gamma */
/* [[file:../util.org::*Gamma][Gamma:1]] */
CAMLprim value gamma_float_bytecode(value x) {
return copy_double(tgamma(Double_val(x)));
}
CAMLprim double gamma_float(double x) {
return tgamma(x);
}
/* Gamma:1 ends here */
/* Popcnt */
/* [[file:../util.org::*Popcnt][Popcnt:1]] */
CAMLprim int32_t popcnt(int64_t i) {
return __builtin_popcountll (i);
}
CAMLprim value popcnt_bytecode(value i) {
return caml_copy_int32(__builtin_popcountll (Int64_val(i)));
}
/* Popcnt:1 ends here */
/* Trailz */
/* [[file:../util.org::*Trailz][Trailz:1]] */
CAMLprim int32_t trailz(int64_t i) {
return __builtin_ctzll (i);
}
CAMLprim value trailz_bytecode(value i) {
return caml_copy_int32(__builtin_ctzll (Int64_val(i)));
}
/* Trailz:1 ends here */
/* Leadz */
/* [[file:../util.org::*Leadz][Leadz:1]] */
CAMLprim int32_t leadz(int64_t i) {
return __builtin_clzll(i);
}
CAMLprim value leadz_bytecode(value i) {
return caml_copy_int32(__builtin_clzll (Int64_val(i)));
}
/* Leadz:1 ends here */

View File

@ -1,51 +1,49 @@
(** All utilities which should be included in all source files are defined here *) (* [[file:../util.org::*Erf][Erf:3]] *)
external erf_float : float -> float = "erf_float_bytecode" "erf_float" [@@unboxed] [@@noalloc]
(* Erf:3 ends here *)
(** {1 Functions from libm} *) (* [[file:../util.org::*Erfc][Erfc:3]] *)
external erfc_float : float -> float = "erfc_float_bytecode" "erfc_float" [@@unboxed] [@@noalloc]
(* Erfc:3 ends here *)
open Constants (* [[file:../util.org::*Gamma][Gamma:3]] *)
external gamma_float : float -> float = "gamma_float_bytecode" "gamma_float" [@@unboxed] [@@noalloc]
(* Gamma:3 ends here *)
external erf_float : float -> float = "erf_float_bytecode" "erf_float"
[@@unboxed] [@@noalloc]
external erfc_float : float -> float = "erfc_float_bytecode" "erfc_float"
[@@unboxed] [@@noalloc]
external gamma_float : float -> float = "gamma_float_bytecode" "gamma_float"
[@@unboxed] [@@noalloc]
(* [[file:../util.org::*Popcnt][Popcnt:3]] *)
external popcnt : int64 -> int32 = "popcnt_bytecode" "popcnt" external popcnt : int64 -> int32 = "popcnt_bytecode" "popcnt"
[@@unboxed] [@@noalloc] [@@unboxed] [@@noalloc]
(** popcnt instruction *)
let popcnt i = (popcnt [@inlined] ) i |> Int32.to_int let popcnt i = (popcnt [@inlined] ) i |> Int32.to_int
(* Popcnt:3 ends here *)
(* [[file:../util.org::*Trailz][Trailz:3]] *)
external trailz : int64 -> int32 = "trailz_bytecode" "trailz" "int" external trailz : int64 -> int32 = "trailz_bytecode" "trailz" "int"
[@@unboxed] [@@noalloc] [@@unboxed] [@@noalloc]
(** ctz instruction *)
let trailz i = trailz i |> Int32.to_int let trailz i = trailz i |> Int32.to_int
(* Trailz:3 ends here *)
(* [[file:../util.org::*Leadz][Leadz:3]] *)
external leadz : int64 -> int32 = "leadz_bytecode" "leadz" "int" external leadz : int64 -> int32 = "leadz_bytecode" "leadz" "int"
[@@unboxed] [@@noalloc] [@@unboxed] [@@noalloc]
(** bsf instruction *)
external vfork : unit -> int = "unix_vfork" "unix_vfork"
let leadz i = leadz i |> Int32.to_int let leadz i = leadz i |> Int32.to_int
(* Leadz:3 ends here *)
exception SIGTERM
let () = (* | ~fact~ | Factorial function. |
let f _ = raise SIGTERM in * | ~binom~ | Binomial coefficient. ~binom n k~ = $C_n^k$ |
Sys.set_signal Sys.sigint (Sys.Signal_handle f) * | ~binom_float~ | float variant of ~binom~ |
;; * | ~pow~ | Fast implementation of the power function for small integer powers |
* | ~chop~ | In ~chop a f~, evaluate ~f~ only if the absolute value of ~a~ is larger than ~Constants.epsilon~, and return ~a *. f ()~. |
* | ~float_of_int_fast~ | Faster implementation of float_of_int for small positive ints |
* | ~not_implemented~ | Fails with error message if some functionality is not implemented |
* | ~of_some~ | Extracts the value of an option | *)
let not_implemented () =
failwith "Not implemented"
(* [[file:../util.org::*General functions][General functions:2]] *)
let memo_float_of_int = let memo_float_of_int =
Array.init 64 float_of_int Array.init 64 float_of_int
@ -58,15 +56,100 @@ let float_of_int_fast i =
let factmax = 150 let factmax = 150
(* Incomplete gamma function : let fact_memo =
{% $\gamma(\alpha,x) = \int_0^x e^{-t} t^{\alpha-1} dt$ %} let rec aux accu_l accu = function
{% $p: \frac{1}{\Gamma(\alpha)} \int_0^x e^{-t} t^{\alpha-1} dt$ %} | 0 -> (aux [@tailcall]) [1.] 1. 1
{% $q: \frac{1}{\Gamma(\alpha)} \int_x^\infty e^{-t} t^{\alpha-1} dt$ %} | i when (i = factmax) ->
let x = (float_of_int factmax) *. accu in
List.rev (x::accu_l)
| i -> let x = (float_of_int i) *. accu in
(aux [@tailcall]) (x::accu_l) x (i+1)
in
aux [] 0. 0
|> Array.of_list
reference - Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten let fact = function
(New Algorithm handbook in C language) (Gijyutsu hyouron | i when (i < 0) ->
sha, Tokyo, 1991) p.227 [in Japanese] *) raise (Invalid_argument "Argument of factorial should be non-negative")
| i when (i > 150) ->
raise (Invalid_argument "Result of factorial is infinite")
| i -> fact_memo.(i)
let binom =
let memo =
let m = Array.make_matrix 64 64 0 in
for n=0 to Array.length m - 1 do
m.(n).(0) <- 1;
m.(n).(n) <- 1;
for k=1 to (n - 1) do
m.(n).(k) <- m.(n-1).(k-1) + m.(n-1).(k)
done
done;
m
in
let rec f n k =
assert (k >= 0);
assert (n >= k);
if k = 0 || k = n then
1
else if n < 64 then
memo.(n).(k)
else
f (n-1) (k-1) + f (n-1) k
in f
let binom_float n k =
binom n k
|> float_of_int_fast
let rec pow a = function
| 0 -> 1.
| 1 -> a
| 2 -> a *. a
| 3 -> a *. a *. a
| -1 -> 1. /. a
| n when n > 0 ->
let b = pow a (n / 2) in
b *. b *. (if n mod 2 = 0 then 1. else a)
| n when n < 0 -> (pow [@tailcall]) (1./.a) (-n)
| _ -> assert false
let chop f g =
if (abs_float f) < Constants.epsilon then 0.
else f *. (g ())
let not_implemented () =
failwith "Not implemented"
let of_some = function
| Some a -> a
| None -> assert false
(* General functions:2 ends here *)
(* The lower [[https://en.wikipedia.org/wiki/Incomplete_gamma_function][Incomplete Gamma function]] is implemented :
* \[
* \gamma(\alpha,x) = \int_0^x e^{-t} t^{\alpha-1} dt
* \]
*
* p: $\frac{1}{\Gamma(\alpha)} \int_0^x e^{-t} t^{\alpha-1} dt$
*
* q: $\frac{1}{\Gamma(\alpha)} \int_x^\infty e^{-t} t^{\alpha-1} dt$
*
* Reference : Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten
* (New Algorithm handbook in C language) (Gijyutsu hyouron sha,
* Tokyo, 1991) p.227 [in Japanese] *)
(* [[file:../util.org::*Functions related to the Boys function][Functions related to the Boys function:2]] *)
let incomplete_gamma ~alpha x = let incomplete_gamma ~alpha x =
assert (alpha >= 0.); assert (alpha >= 0.);
assert (x >= 0.); assert (x >= 0.);
@ -109,96 +192,26 @@ let incomplete_gamma ~alpha x =
qg_loop min_float (w /. lb) 1. lb w 2.0 qg_loop min_float (w /. lb) 1. lb w 2.0
in in
gf *. p_gamma x gf *. p_gamma x
(* Functions related to the Boys function:2 ends here *)
(* The [[https://link.springer.com/article/10.1007/s10910-005-9023-3][Generalized Boys function]] is implemented,
* ~maxm~ is the maximum total angular momentum.
*
* \[
* F_m(x) = \frac{\gamma(m+1/2,x)}{2x^{m+1/2}}
* \]
* where $\gamma$ is the incomplete gamma function.
*
* - $F_0(0.) = 1$
* - $F_0(t) = \frac{\sqrt{\pi}}{2\sqrt{t}} \text{erf} ( \sqrt{t} )$
* - $F_m(0.) = \frac{1}{2m+1}$
* - $F_m(t) = \frac{\gamma{m+1/2,t}}{2t^{m+1/2}}$
* - $F_m(t) = \frac{ 2t\, F_{m+1}(t) + e^{-t} }{2m+1}$ *)
let fact_memo = (* [[file:../util.org::*Functions related to the Boys function][Functions related to the Boys function:4]] *)
let rec aux accu_l accu = function
| 0 -> (aux [@tailcall]) [1.] 1. 1
| i when (i = factmax) ->
let x = (float_of_int factmax) *. accu in
List.rev (x::accu_l)
| i -> let x = (float_of_int i) *. accu in
(aux [@tailcall]) (x::accu_l) x (i+1)
in
aux [] 0. 0
|> Array.of_list
let fact = function
| i when (i < 0) ->
raise (Invalid_argument "Argument of factorial should be non-negative")
| i when (i > 150) ->
raise (Invalid_argument "Result of factorial is infinite")
| i -> fact_memo.(i)
let binom =
let memo =
let m =
Array.make_matrix 64 64 0
in
for n=0 to Array.length m - 1 do
m.(n).(0) <- 1;
m.(n).(n) <- 1;
for k=1 to (n - 1) do
m.(n).(k) <- m.(n-1).(k-1) + m.(n-1).(k)
done
done;
m
in
let rec f n k =
assert (k >= 0);
assert (n >= k);
if k = 0 || k = n then
1
else if n < 64 then
memo.(n).(k)
else
f (n-1) (k-1) + f (n-1) k
in f
let binom_float n k =
binom n k
|> float_of_int_fast
let rec pow a = function
| 0 -> 1.
| 1 -> a
| 2 -> a *. a
| 3 -> a *. a *. a
| -1 -> 1. /. a
| n when n > 0 ->
let b = pow a (n / 2) in
b *. b *. (if n mod 2 = 0 then 1. else a)
| n when n < 0 -> (pow [@tailcall]) (1./.a) (-n)
| _ -> assert false
let chop f g =
if (abs_float f) < Constants.epsilon then 0.
else f *. (g ())
(** Generalized Boys function.
maxm : Maximum total angular momentum
{% $F_m(x) = \frac{\gamma(m+1/2,x)}{2x^{m+1/2}}$ %}
where %{ $\gamma$ %} is the incomplete gamma function.
{% $F_0(0.) = 1$ %}
{% $F_0(t) = \frac{\sqrt{\pi}}{2\sqrt{t}} \text{erf} ( \sqrt{t} )$ %}
{% $F_m(0.) = \frac{1}{2m+1}$ %}
{% $F_m(t) = \frac{\gamma{m+1/2,t}}{2t^{m+1/2}}
{% $F_m(t) = \frac{ 2t\, F_{m+1}(t) + e^{-t} }{2m+1}$ %}
*)
let boys_function ~maxm t = let boys_function ~maxm t =
assert (t >= 0.); assert (t >= 0.);
match maxm with match maxm with
@ -206,7 +219,7 @@ let boys_function ~maxm t =
begin begin
if t = 0. then [| 1. |] else if t = 0. then [| 1. |] else
let sq_t = sqrt t in let sq_t = sqrt t in
[| (sq_pi_over_two /. sq_t) *. erf_float sq_t |] [| (Constants.sq_pi_over_two /. sq_t) *. erf_float sq_t |]
end end
| _ -> | _ ->
begin begin
@ -235,15 +248,16 @@ let boys_function ~maxm t =
result result
with Exit -> result with Exit -> result
end end
(* Functions related to the Boys function:4 ends here *)
let of_some = function
| Some a -> a (* | ~list_some~ | Filters out all ~None~ elements of the list, and returns the elements without the ~Some~ |
| None -> assert false * | ~list_range~ | Creates a list of consecutive integers |
* | ~list_pack~ | ~list_pack n l~ Creates a list of ~n~-elements lists | *)
(** {2 List functions} *) (* [[file:../util.org::*List functions][List functions:2]] *)
let list_some l = let list_some l =
List.filter (function None -> false | _ -> true) l List.filter (function None -> false | _ -> true) l
|> List.rev_map (function Some x -> x | _ -> assert false) |> List.rev_map (function Some x -> x | _ -> assert false)
@ -272,10 +286,37 @@ let list_pack n l =
| _ -> (aux [@tailcall]) (i-1) (a::accu1) accu2 rest | _ -> (aux [@tailcall]) (i-1) (a::accu1) accu2 rest
in in
aux (n-1) [] [] l aux (n-1) [] [] l
(* List functions:2 ends here *)
(** {2 Stream functions} *)
(* | ~array_range~ | Creates an array of consecutive integers |
* | ~array_sum~ | Returns the sum of all the elements of the array |
* | ~array_product~ | Returns the product of all the elements of the array | *)
(* [[file:../util.org::*Array functions][Array functions:2]] *)
let array_range first last =
if last < first then [| |] else
Array.init (last-first+1) (fun i -> i+first)
let array_sum a =
Array.fold_left ( +. ) 0. a
let array_product a =
Array.fold_left ( *. ) 1. a
(* Array functions:2 ends here *)
(* | ~stream_range~ | Creates a stream returning consecutive integers |
* | ~stream_to_list~ | Read a stream and put items in a list |
* | ~stream_fold~ | Apply a fold to the elements of the stream | *)
(* [[file:../util.org::*Stream functions][Stream functions:2]] *)
let stream_range first last = let stream_range first last =
Stream.from (fun i -> Stream.from (fun i ->
let result = i+first in let result = i+first in
@ -310,34 +351,48 @@ let stream_fold f init stream =
| None -> accu | None -> accu
in in
aux init aux init
(* Stream functions:2 ends here *)
(** {2 Array functions} *)
let array_range first last =
if last < first then [| |] else
Array.init (last-first+1) (fun i -> i+first)
let array_sum a =
Array.fold_left ( +. ) 0. a
let array_product a =
Array.fold_left ( *. ) 1. a
(** {2 Printers} *) (* | ~pp_float_array~ | Printer for float arrays |
* | ~pp_float_array_size~ | Printer for float arrays with size |
* | ~pp_float_2darray~ | Printer for matrices |
* | ~pp_float_2darray_size~ | Printer for matrices with size |
* | ~pp_bitstring~ | Printer for bit strings (used by ~Bitstring~ module) |
*
* #+begin_example
* pp_float_array_size:
* [ 6: 1.000000 1.732051 1.732051 1.000000 1.732051 1.000000 ]
*
* pp_float_array:
* [ 1.000000 1.732051 1.732051 1.000000 1.732051 1.000000 ]
*
* pp_float_2darray_size
* [
* 2:[ 6: 1.000000 1.732051 1.732051 1.000000 1.732051 1.000000 ]
* [ 4: 1.000000 2.000000 3.000000 4.000000 ] ]
*
* pp_float_2darray:
* [ [ 1.000000 1.732051 1.732051 1.000000 1.732051 1.000000 ]
* [ 1.000000 2.000000 3.000000 4.000000 ] ]
*
* pp_bitstring 14:
* +++++------+--
* #+end_example *)
(* [[file:../util.org::*Printers][Printers:2]] *)
let pp_float_array ppf a =
Format.fprintf ppf "@[<2>[@ ";
Array.iter (fun f -> Format.fprintf ppf "@[%10f@]@ " f) a;
Format.fprintf ppf "]@]"
let pp_float_array_size ppf a = let pp_float_array_size ppf a =
Format.fprintf ppf "@[<2>@[ %d:@[<2>" (Array.length a); Format.fprintf ppf "@[<2>@[ %d:@[<2>" (Array.length a);
Array.iter (fun f -> Format.fprintf ppf "@[%10f@]@ " f) a; Array.iter (fun f -> Format.fprintf ppf "@[%10f@]@ " f) a;
Format.fprintf ppf "]@]@]" Format.fprintf ppf "]@]@]"
let pp_float_array ppf a =
Format.fprintf ppf "@[<2>[@ ";
Array.iter (fun f -> Format.fprintf ppf "@[%10f@]@ " f) a;
Format.fprintf ppf "]@]"
let pp_float_2darray ppf a = let pp_float_2darray ppf a =
Format.fprintf ppf "@[<2>[@ "; Format.fprintf ppf "@[<2>[@ ";
Array.iter (fun f -> Format.fprintf ppf "@[%a@]@ " pp_float_array f) a; Array.iter (fun f -> Format.fprintf ppf "@[%a@]@ " pp_float_array f) a;
@ -348,11 +403,7 @@ let pp_float_2darray_size ppf a =
Array.iter (fun f -> Format.fprintf ppf "@[%a@]@ " pp_float_array_size f) a; Array.iter (fun f -> Format.fprintf ppf "@[%a@]@ " pp_float_array_size f) a;
Format.fprintf ppf "]@]@]" Format.fprintf ppf "]@]@]"
let pp_bitstring n ppf bs = let pp_bitstring n ppf bs =
String.init n (fun i -> if (Z.testbit bs i) then '+' else '-') String.init n (fun i -> if (Z.testbit bs i) then '+' else '-')
|> Format.fprintf ppf "@[<h>%s@]" |> Format.fprintf ppf "@[<h>%s@]"
(* Printers:2 ends here *)

View File

@ -1,164 +1,90 @@
(** All utilities which should be included in all source files are defined here *) (* [[file:../util.org::*Erf][Erf:2]] *)
external erf_float : float -> float = "erf_float_bytecode" "erf_float" [@@unboxed] [@@noalloc]
(* Erf:2 ends here *)
(* [[file:../util.org::*Erfc][Erfc:2]] *)
external erfc_float : float -> float = "erfc_float_bytecode" "erfc_float" [@@unboxed] [@@noalloc]
(* Erfc:2 ends here *)
(* [[file:../util.org::*Gamma][Gamma:2]] *)
external gamma_float : float -> float = "gamma_float_bytecode" "gamma_float" [@@unboxed] [@@noalloc]
(* Gamma:2 ends here *)
(** {2 Functions from libm} *) (* [[file:../util.org::*Popcnt][Popcnt:2]] *)
external erf_float : float -> float = "erf_float_bytecode" "erf_float"
[@@unboxed] [@@noalloc]
(** Error function [erf] from [libm] *)
external erfc_float : float -> float = "erfc_float_bytecode" "erfc_float"
[@@unboxed] [@@noalloc]
(** Complementary error function [erfc] from [libm] *)
external gamma_float : float -> float = "gamma_float_bytecode" "gamma_float"
[@@unboxed] [@@noalloc]
(** Gamma function [gamma] from [libm] *)
external vfork : unit -> int = "unix_vfork" "unix_vfork"
(*
external popcnt : int64 -> int32 = "popcnt_bytecode" "popcnt"
[@@unboxed] [@@noalloc]
(** popcnt instruction *)
external trailz : int64 -> int32 = "trailz_bytecode" "trailz"
[@@unboxed] [@@noalloc]
(** ctz instruction *)
*)
val popcnt : int64 -> int val popcnt : int64 -> int
(** popcnt instruction *) (* Popcnt:2 ends here *)
(* [[file:../util.org::*Trailz][Trailz:2]] *)
val trailz : int64 -> int val trailz : int64 -> int
(** ctz instruction *) (* Trailz:2 ends here *)
(* [[file:../util.org::*Leadz][Leadz:2]] *)
val leadz : int64 -> int val leadz : int64 -> int
(** ctz instruction *) (* Leadz:2 ends here *)
(* General functions *)
(* [[file:../util.org::*General functions][General functions:1]] *)
(** {2 General functions} *)
val not_implemented : unit -> 'a
(** Fails with error message if some functionality is not implemented. *)
val fact : int -> float val fact : int -> float
(** Factorial function. (* @raise Invalid_argument for negative arguments or arguments >100. *)
@raise Invalid_argument for negative arguments or arguments >100.
*)
val binom : int -> int -> int val binom : int -> int -> int
(** Binomial coefficient. [binom n k] {% $= C_n^k$ %}. *)
val binom_float : int -> int -> float val binom_float : int -> int -> float
(** Binomial coefficient. [binom n k] {% $= C_n^k$ %}. *)
val pow : float -> int -> float
(** Fast implementation of the power function for small integer powers *)
val chop : float -> (unit -> float) -> float val chop : float -> (unit -> float) -> float
(** In [chop a f], evaluate [f] only if the absolute value of [a] is larger val pow : float -> int -> float
than {!Constants.epsilon}, and return [a *. f ()].
*)
val float_of_int_fast : int -> float val float_of_int_fast : int -> float
(* Faster implementation of float_of_int for small positive ints *)
val not_implemented : unit -> 'a
val of_some : 'a option -> 'a val of_some : 'a option -> 'a
(* General functions:1 ends here *)
(** {2 Functions related to the Boys function} *) (* Functions related to the Boys function *)
(* [[file:../util.org::*Functions related to the Boys function][Functions related to the Boys function:1]] *)
val incomplete_gamma : alpha:float -> float -> float val incomplete_gamma : alpha:float -> float -> float
(** {{:https://en.wikipedia.org/wiki/Incomplete_gamma_function} (* @raise Failure when the calculation doesn't converge. *)
Lower incomplete gamma function} (* Functions related to the Boys function:1 ends here *)
@raise Failure when the calculation doesn't converge.
*)
(* [[file:../util.org::*Functions related to the Boys function][Functions related to the Boys function:3]] *)
val boys_function : maxm:int -> float -> float array val boys_function : maxm:int -> float -> float array
(** {{:https://link.springer.com/article/10.1007/s10910-005-9023-3} (* Functions related to the Boys function:3 ends here *)
Generalized Boys function}.
@param maxm Maximum total angular momentum. (* List functions *)
*)
(** {2 Extension of the Array module} *) (* [[file:../util.org::*List functions][List functions:1]] *)
val array_range : int -> int -> int array
(** [array_range first last] returns an array [| first; first+1 ; ... ; last-1 ; last |]. *)
val array_sum : float array -> float
(** Returns the sum of all the elements of the array *)
val array_product : float array -> float
(** Returns the product of all the elements of the array *)
(** {2 Extension of the List module} *)
val list_some : 'a option list -> 'a list val list_some : 'a option list -> 'a list
(** Filters out all [None] elements of the list, and returns the elements without
the [Some]. *)
val list_range : int -> int -> int list val list_range : int -> int -> int list
(** [list_range first last] returns a list [first; first+1 ; ... ; last-1 ; last ]. *)
val list_pack : int -> 'a list -> 'a list list val list_pack : int -> 'a list -> 'a list list
(** Example: (* List functions:1 ends here *)
{[
list_pack 3 [ 1; 2; 3; ...; 18; 19; 20 ] =
[[1; 2; 3]; [4; 5; 6]; [7; 8; 9]; [10; 11; 12]; [13; 14; 15];
[16; 17; 18]; [19; 20]]
]}
*)
(** {2 Useful streams} *) (* Array functions *)
(* [[file:../util.org::*Array functions][Array functions:1]] *)
val array_range : int -> int -> int array
val array_sum : float array -> float
val array_product : float array -> float
(* Array functions:1 ends here *)
(* Stream functions *)
(* [[file:../util.org::*Stream functions][Stream functions:1]] *)
val stream_range : int -> int -> int Stream.t val stream_range : int -> int -> int Stream.t
(** [stream_range first last] returns a stream <first ; first+1 ; ... ; last-1 ; last>. *)
val stream_to_list : 'a Stream.t -> 'a list val stream_to_list : 'a Stream.t -> 'a list
(** Read a stream and put items in a list. *)
val stream_fold : ('a -> 'b -> 'a) -> 'a -> 'b Stream.t -> 'a val stream_fold : ('a -> 'b -> 'a) -> 'a -> 'b Stream.t -> 'a
(** Apply a fold to the elements of the stream. *) (* Stream functions:1 ends here *)
(* Printers *)
(** {2 Printers} *) (* [[file:../util.org::*Printers][Printers:1]] *)
val pp_float_array_size : Format.formatter -> float array -> unit val pp_float_array_size : Format.formatter -> float array -> unit
(** Example:
{[
[ 6: 1.000000 1.732051 1.732051 1.000000 1.732051 1.000000
]
]}
*)
val pp_float_array : Format.formatter -> float array -> unit val pp_float_array : Format.formatter -> float array -> unit
(** Example:
{[
[ 1.000000 1.732051 1.732051 1.000000 1.732051 1.000000
]
]}
*)
val pp_float_2darray_size : Format.formatter -> float array array -> unit val pp_float_2darray_size : Format.formatter -> float array array -> unit
(** Example:
{[
[
2:[ 6: 1.000000 1.732051 1.732051 1.000000 1.732051 1.000000 ]
[ 4: 1.000000 2.000000 3.000000 4.000000 ] ]
]}
*)
val pp_float_2darray : Format.formatter -> float array array -> unit val pp_float_2darray : Format.formatter -> float array array -> unit
(** Example:
{[
[ [ 1.000000 1.732051 1.732051 1.000000 1.732051 1.000000 ]
[ 1.000000 2.000000 3.000000 4.000000 ] ]
]}
*)
val pp_bitstring : int -> Format.formatter -> Z.t -> unit val pp_bitstring : int -> Format.formatter -> Z.t -> unit
(** Example: [ pp_bitstring 14 ppf z -> +++++------+-- ] *) (* Printers:1 ends here *)

View File

@ -1,5 +1,4 @@
open Powers (* [[file:../zkey.org::*Types][Types:2]] *)
type t = type t =
{ {
mutable left : int; mutable left : int;
@ -7,7 +6,31 @@ type t =
kind : int ; kind : int ;
} }
open Powers
type kind =
| Three of Powers.t
| Four of (int * int * int * int)
| Six of (Powers.t * Powers.t)
| Nine of (Powers.t * Powers.t * Powers.t)
| Twelve of (Powers.t * Powers.t * Powers.t * Powers.t)
(* Types:2 ends here *)
(* | ~of_powers_three | Create from a ~Powers.t~ |
* | ~of_powers_six | Create from two ~Powers.t~ |
* | ~of_powers_nine | Create from three ~Powers.t~ |
* | ~of_powers_twelve | Create from four ~Powers.t~ |
* | ~of_powers | Create using the ~kind~ type |
* | ~of_int_array | Convert from an ~int~ array |
* | ~of_int_four | Create from four ~ints~ |
* | ~to_int_array | Convert to an ~int~ array |
* | ~to_powers | Convert to an ~Powers.t~ array |
* | ~to_string | Pretty printing | *)
(* [[file:../zkey.org::*Conversions][Conversions:2]] *)
(** Creates a Zkey. *) (** Creates a Zkey. *)
let make ~kind right = let make ~kind right =
{ left = 0 ; right ; kind } { left = 0 ; right ; kind }
@ -29,13 +52,6 @@ let (<+) z x =
z z
type kind =
| Three of Powers.t
| Four of (int * int * int * int)
| Six of (Powers.t * Powers.t)
| Nine of (Powers.t * Powers.t * Powers.t)
| Twelve of (Powers.t * Powers.t * Powers.t * Powers.t)
let of_powers_three { x=a ; y=b ; z=c ; _ } = let of_powers_three { x=a ; y=b ; z=c ; _ } =
assert ( assert (
let alpha = a lor b lor c in let alpha = a lor b lor c in
@ -43,6 +59,7 @@ let of_powers_three { x=a ; y=b ; z=c ; _ } =
); );
make ~kind:3 a <+ b <+ c make ~kind:3 a <+ b <+ c
let of_int_four i j k l = let of_int_four i j k l =
assert ( assert (
let alpha = i lor j lor k lor l in let alpha = i lor j lor k lor l in
@ -50,6 +67,7 @@ let of_int_four i j k l =
); );
make ~kind:4 i <+ j <+ k <+ l make ~kind:4 i <+ j <+ k <+ l
let of_powers_six { x=a ; y=b ; z=c ; _ } { x=d ; y=e ; z=f ; _ } = let of_powers_six { x=a ; y=b ; z=c ; _ } { x=d ; y=e ; z=f ; _ } =
assert ( assert (
let alpha = a lor b lor c lor d lor e lor f in let alpha = a lor b lor c lor d lor e lor f in
@ -57,6 +75,7 @@ let of_powers_six { x=a ; y=b ; z=c ; _ } { x=d ; y=e ; z=f ; _ } =
); );
make ~kind:6 a << b << c << d << e << f make ~kind:6 a << b << c << d << e << f
let of_powers_nine { x=a ; y=b ; z=c ; _ } { x=d ; y=e ; z=f ; _ } let of_powers_nine { x=a ; y=b ; z=c ; _ } { x=d ; y=e ; z=f ; _ }
{ x=g ; y=h ; z=i ; _ } = { x=g ; y=h ; z=i ; _ } =
assert ( assert (
@ -66,6 +85,7 @@ let of_powers_nine { x=a ; y=b ; z=c ; _ } { x=d ; y=e ; z=f ; _ }
make ~kind:9 a << b << c << d << e << f make ~kind:9 a << b << c << d << e << f
<| g << h << i <| g << h << i
let of_powers_twelve { x=a ; y=b ; z=c ; _ } { x=d ; y=e ; z=f ; _ } let of_powers_twelve { x=a ; y=b ; z=c ; _ } { x=d ; y=e ; z=f ; _ }
{ x=g ; y=h ; z=i ; _ } { x=j ; y=k ; z=l ; _ } = { x=g ; y=h ; z=i ; _ } { x=j ; y=k ; z=l ; _ } =
assert ( assert (
@ -92,8 +112,8 @@ and mask15 = 0x7fff
let of_int_array = function let of_int_array = function
| [| a ; b ; c ; d |] -> of_int_four a b c d | [| a ; b ; c ; d |] -> of_int_four a b c d
| _ -> invalid_arg "of_int_array" | _ -> invalid_arg "of_int_array"
(** Transform the Zkey into an int array *) (** Transform the Zkey into an int array *)
@ -203,9 +223,16 @@ let to_powers { left ; right ; kind } =
) )
| _ -> invalid_arg (__FILE__^": to_powers") | _ -> invalid_arg (__FILE__^": to_powers")
(* Conversions:2 ends here *)
(* | ~hash~ | Associates a nonnegative integer to any Zkey |
* | ~equal~ | The equal function. True if two Zkeys are equal |
* | ~compare~ | Comparison function, used for sorting | *)
(* [[file:../zkey.org::*Functions for hash tables][Functions for hash tables:2]] *)
let hash = Hashtbl.hash let hash = Hashtbl.hash
let equal let equal
@ -213,6 +240,7 @@ let equal
{ right = r2 ; left = l2 ; kind = k2 } = { right = r2 ; left = l2 ; kind = k2 } =
r1 = r2 && l1 = l2 && k1 = k2 r1 = r2 && l1 = l2 && k1 = k2
let compare let compare
{ right = r1 ; left = l1 ; kind = k1 } { right = r1 ; left = l1 ; kind = k1 }
{ right = r2 ; left = l2 ; kind = k2 } = { right = r2 ; left = l2 ; kind = k2 } =
@ -223,6 +251,7 @@ let compare
else if l1 > l2 then 1 else if l1 > l2 then 1
else 0 else 0
let to_string { left ; right ; kind } = let to_string { left ; right ; kind } =
"< " ^ string_of_int left ^ string_of_int right ^ " | " ^ ( "< " ^ string_of_int left ^ string_of_int right ^ " | " ^ (
to_int_array { left ; right ; kind } to_int_array { left ; right ; kind }
@ -230,4 +259,9 @@ let to_string { left ; right ; kind } =
|> Array.to_list |> Array.to_list
|> String.concat ", " |> String.concat ", "
) ^ " >" ) ^ " >"
(* Functions for hash tables:2 ends here *)
(* [[file:../zkey.org::*Printers][Printers:2]] *)
let pp ppf t =
Format.fprintf ppf "@[%s@]" (to_string t)
(* Printers:2 ends here *)

View File

@ -1,77 +1,45 @@
(** Encodes the powers of x, y, z in a compact form, suitable for being (* Types *)
used as keys in a hash table.
Internally, the {Zkey.t} is made of two integers, [left] and [right].
The small integers x, y and z are stored compactly in this 126-bits
space:
{[
Left Right
3 [--------------------------------------------------------------] [------------------|---------------|---------------|---------------]
x y z
6 [--------------------------------------------------------------] [---|----------|----------|----------|----------|----------|---------]
x1 y1 z1 x2 y2 z2
9 [---------------------------------|----------|----------|---------] [---|----------|----------|----------|----------|----------|---------]
x1 y1 z1 x2 y2 z2 x3 y3 z3
12 [---|----------|----------|----------|----------|----------|---------] [---|----------|----------|----------|----------|----------|---------]
x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4
]}
The values of x,y,z should be positive and should not exceed 32767 for
[kind=3]. For all other kinds kinds the values should not exceed 1023.
*)
(* [[file:../zkey.org::*Types][Types:1]] *)
type t type t
val to_string : t -> string
(** Pretty printing *)
val of_powers_three : Powers.t -> t
(** Create from a {!Powers.t}. *)
val of_int_four : int -> int -> int -> int -> t
(** Create from four integers. *)
val of_powers_six : Powers.t -> Powers.t -> t
(** Create from two {!Powers.t}. *)
val of_powers_nine : Powers.t -> Powers.t -> Powers.t -> t
(** Create from three {!Powers.t}. *)
val of_powers_twelve : Powers.t -> Powers.t -> Powers.t -> Powers.t -> t
(** Create from four {!Powers.t}. *)
type kind = type kind =
| Three of Powers.t | Three of Powers.t
| Four of (int * int * int * int) | Four of (int * int * int * int)
| Six of (Powers.t * Powers.t) | Six of (Powers.t * Powers.t)
| Nine of (Powers.t * Powers.t * Powers.t) | Nine of (Powers.t * Powers.t * Powers.t)
| Twelve of (Powers.t * Powers.t * Powers.t * Powers.t) | Twelve of (Powers.t * Powers.t * Powers.t * Powers.t)
(* Types:1 ends here *)
(* Conversions *)
(* [[file:../zkey.org::*Conversions][Conversions:1]] *)
val of_powers_three : Powers.t -> t
val of_powers_six : Powers.t -> Powers.t -> t
val of_powers_nine : Powers.t -> Powers.t -> Powers.t -> t
val of_powers_twelve : Powers.t -> Powers.t -> Powers.t -> Powers.t -> t
val of_powers : kind -> t val of_powers : kind -> t
(** Create using the [kind] type *)
val to_int_array : t -> int array
(** Convert to an int array. *)
val of_int_array : int array -> t val of_int_array : int array -> t
(** Convert from an int array. *) val of_int_four : int -> int -> int -> int -> t
val to_int_array : t -> int array
val to_powers : t -> kind val to_powers : t -> kind
val to_string : t -> string
(* Conversions:1 ends here *)
(** {1 Functions for hash tables} *) (* Functions for hash tables *)
(* [[file:../zkey.org::*Functions for hash tables][Functions for hash tables:1]] *)
val hash : t -> int val hash : t -> int
(** Associates a nonnegative integer to any Zkey. *)
val equal : t -> t -> bool val equal : t -> t -> bool
(** The equal function. True if two Zkeys are equal. *)
val compare : t -> t -> int val compare : t -> t -> int
(** Comparison function, used for sorting. *) (* Functions for hash tables:1 ends here *)
(* Printers *)
(* [[file:../zkey.org::*Printers][Printers:1]] *)
val pp : Format.formatter -> t -> unit
(* Printers:1 ends here *)

View File

@ -1,5 +1,4 @@
(** Hash table where the keys are of type Zkey.t (tuples of integers) *) (* [[file:../zmap.org::*Type][Type:2]] *)
module Zmap = Hashtbl.Make(Zkey) module Zmap = Hashtbl.Make(Zkey)
include Zmap include Zmap
(* Type:2 ends here *)

View File

@ -1,5 +1,6 @@
(** Hash table where the keys are of type Zkey.t (tuples of integers). *) (* Type *)
(* [[file:../zmap.org::*Type][Type:1]] *)
include module type of Hashtbl.Make(Zkey) include module type of Hashtbl.Make(Zkey)
(* Type:1 ends here *)

128
common/powers.org Normal file
View File

@ -0,0 +1,128 @@
#+begin_src elisp tangle: no :results none :exports none
(setq pwd (file-name-directory buffer-file-name))
(setq name (file-name-nondirectory (substring buffer-file-name 0 -4)))
(setq lib (concat pwd "lib/"))
(setq testdir (concat pwd "test/"))
(setq mli (concat lib name ".mli"))
(setq ml (concat lib name ".ml"))
(setq test-ml (concat testdir name ".ml"))
(org-babel-tangle)
#+end_src
* Powers
:PROPERTIES:
:header-args: :noweb yes :comments both
:END:
Contains powers of x, y and z describing the polynomials in atomic basis sets.
** Type
#+begin_src ocaml :tangle (eval mli)
type t = private {
x : int ;
y : int ;
z : int ;
tot : int ;
}
#+end_src
~tot~ always contains ~x+y+z~.
#+begin_src ocaml :tangle (eval ml) :exports none
type t = {
x : int ;
y : int ;
z : int ;
tot : int ;
}
#+end_src
** Conversions
#+begin_src ocaml :tangle (eval mli)
val of_int_tuple : int * int * int -> t
val to_int_tuple : t -> int * int * int
#+end_src
#+begin_example
Powers.of_int_tuple (2,3,1);;
- : Powers.t = {Qcaml.Common.Powers.x = 2; y = 3; z = 1; tot = 6}
Powers.(to_int_tuple (of_int_tuple (2,3,1)));;
- : int * int * int = (2, 3, 1)
#+end_example
#+begin_src ocaml :tangle (eval ml) :exports none
let of_int_tuple t =
let result =
match t with
| (x,y,z) -> { x ; y ; z ; tot=x+y+z }
in
if result.x < 0 ||
result.y < 0 ||
result.z < 0 ||
result.tot < 0 then
invalid_arg (__FILE__^": of_int_tuple");
result
let to_int_tuple { x ; y ; z ; _ } = (x,y,z)
#+end_src
** Operations
#+begin_src ocaml :tangle (eval mli)
val get : Coordinate.axis -> t -> int
val incr : Coordinate.axis -> t -> t
val decr : Coordinate.axis -> t -> t
#+end_src
| ~get~ | Returns the value of the power for $x$, $y$ or $z$
| ~incr~ | Returns a new ~Powers.t~ with the power on the given axis incremented |
| ~decr~ | Returns a new ~Powers.t~ with the power on the given axis decremented. As opposed to ~of_int_tuple~, the values may become negative|
#+begin_example
Powers.get Coordinate.Y (Powers.of_int_tuple (2,3,1));;
- : int = 3
Powers.incr Coordinate.Y (Powers.of_int_tuple (2,3,1));;
- : Powers.t = {Qcaml.Common.Powers.x = 2; y = 4; z = 1; tot = 7}
Powers.decr Coordinate.Y (Powers.of_int_tuple (2,3,1));;
- : Powers.t = {Qcaml.Common.Powers.x = 2; y = 2; z = 1; tot = 5}
#+end_example
#+begin_src ocaml :tangle (eval ml) :exports none
let get coord t =
match coord with
| Coordinate.X -> t.x
| Coordinate.Y -> t.y
| Coordinate.Z -> t.z
let incr coord t =
match coord with
| Coordinate.X -> let r = t.x+1 in { t with x = r ; tot = t.tot+1 }
| Coordinate.Y -> let r = t.y+1 in { t with y = r ; tot = t.tot+1 }
| Coordinate.Z -> let r = t.z+1 in { t with z = r ; tot = t.tot+1 }
let decr coord t =
match coord with
| Coordinate.X -> let r = t.x-1 in { t with x = r ; tot = t.tot-1 }
| Coordinate.Y -> let r = t.y-1 in { t with y = r ; tot = t.tot-1 }
| Coordinate.Z -> let r = t.z-1 in { t with z = r ; tot = t.tot-1 }
#+end_src
** Printers
#+begin_src ocaml :tangle (eval mli)
val pp : Format.formatter -> t -> unit
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
let pp ppf t =
Format.fprintf ppf "@[x^%d + y^%d + z^%d@]" t.x t.y t.z
#+end_src

44
common/qcaml.org Normal file
View File

@ -0,0 +1,44 @@
#+begin_src elisp tangle: no :results none :exports none
(setq pwd (file-name-directory buffer-file-name))
(setq name (file-name-nondirectory (substring buffer-file-name 0 -4)))
(setq lib (concat pwd "lib/"))
(setq testdir (concat pwd "test/"))
(setq mli (concat lib name ".mli"))
(setq ml (concat lib name ".ml"))
(setq test-ml (concat testdir name ".ml"))
(org-babel-tangle)
#+end_src
* QCaml
:PROPERTIES:
:header-args: :noweb yes :comments both
:END:
QCaml-specific parameters
#+begin_src ocaml :tangle (eval mli)
val root : string
val name : string
#+end_src
| ~root~ | Path to the QCaml source directory |
| ~name~ | ~"QCaml"~ |
#+begin_src ocaml :tangle (eval ml) :exports none
let name = "QCaml"
let root =
let rec chop = function
| [] -> []
| x :: _ as l when x = name -> l
| _ :: rest -> chop rest
in
String.split_on_char Filename.dir_sep.[0] (Sys.getcwd ())
|> List.rev
|> chop
|> List.rev
|> String.concat Filename.dir_sep
#+end_src

96
common/range.org Normal file
View File

@ -0,0 +1,96 @@
#+begin_src elisp tangle: no :results none :exports none
(setq pwd (file-name-directory buffer-file-name))
(setq name (file-name-nondirectory (substring buffer-file-name 0 -4)))
(setq lib (concat pwd "lib/"))
(setq testdir (concat pwd "test/"))
(setq mli (concat lib name ".mli"))
(setq ml (concat lib name ".ml"))
(setq test-ml (concat testdir name ".ml"))
(org-babel-tangle)
#+end_src
* Range
:PROPERTIES:
:header-args: :noweb yes :comments both
:END:
A range is a sorted list of integers in an interval.
- ~"[a-b]"~ : range between a and b (included)
- ~"[a]"~ : the list with only one integer a
- ~"a"~ : equivalent to "[a]"
- ~"[36-53,72-107,126-131]"~ represents the list of integers
[ 37 ; 37 ; 38 ; ... ; 52 ; 53 ; 72 ; 73 ; ... ; 106 ; 107 ; 126 ; 127 ; ... ; 130 ; 131 ].
** Type
#+begin_src ocaml :tangle (eval mli)
type t
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
type t = int list
#+end_src
** Conversion
#+begin_src ocaml :tangle (eval mli)
val of_string : string -> t
val to_string : t -> string
val to_int_list : t -> int list
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
let to_int_list r = r
let expand_range r =
match String.split_on_char '-' r with
| s :: f :: [] ->
begin
let start = int_of_string s
and finish = int_of_string f
in
assert (start <= finish) ;
let rec do_work = function
| i when i=finish -> [ i ]
| i -> i::(do_work (i+1))
in do_work start
end
| r :: [] -> [int_of_string r]
| [] -> []
| _ -> invalid_arg "Only one range expected"
let of_string s =
match s.[0] with
| '0' .. '9' -> [ int_of_string s ]
| _ ->
assert (s.[0] = '[') ;
assert (s.[(String.length s)-1] = ']') ;
let s = String.sub s 1 ((String.length s) - 2) in
let l = String.split_on_char ',' s in
let l = List.map expand_range l in
List.concat l
|> List.sort_uniq compare
let to_string l =
"[" ^
(List.map string_of_int l
|> String.concat ",") ^
"]"
#+end_src
** Printers
#+begin_src ocaml :tangle (eval mli)
val pp : Format.formatter -> t -> unit
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
let pp ppf t =
Format.fprintf ppf "@[%s@]" (to_string t)
#+end_src

63
common/spin.org Normal file
View File

@ -0,0 +1,63 @@
#+begin_src elisp tangle: no :results none :exports none
(setq pwd (file-name-directory buffer-file-name))
(setq name (file-name-nondirectory (substring buffer-file-name 0 -4)))
(setq lib (concat pwd "lib/"))
(setq testdir (concat pwd "test/"))
(setq mli (concat lib name ".mli"))
(setq ml (concat lib name ".ml"))
(setq test-ml (concat testdir name ".ml"))
(org-babel-tangle)
#+end_src
* Spin
:PROPERTIES:
:header-args: :noweb yes :comments both
:END:
Electron spin
** Type
#+begin_src ocaml :tangle (eval mli)
type t = Alfa | Beta
#+end_src
Note :
~Alfa~ if written with an 'f' instead of 'ph' because it has the same number of
letters as ~Beta~, so the alignment of the code is nicer.
#+begin_src ocaml :tangle (eval ml) :exports none
type t = (* m_s *)
| Alfa (* {% $m_s = +1/2$ %} *)
| Beta (* {% $m_s = -1/2$ %} *)
#+end_src
** Functions
#+begin_src ocaml :tangle (eval mli)
val other : t -> t
#+end_src
Returns the opposite spin
#+begin_src ocaml :tangle (eval ml) :exports none
let other = function
| Alfa -> Beta
| Beta -> Alfa
let to_string = function
| Alfa -> "Alpha"
| Beta -> "Beta "
#+end_src
** Printers
#+begin_src ocaml :tangle (eval mli)
val pp : Format.formatter -> t -> unit
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
let pp ppf t =
Format.fprintf ppf "@[%s@]" (to_string t)
#+end_src

View File

@ -1,6 +1,15 @@
(* Test header :noexport: *)
(* [[file:../util.org::*Test header][Test header:1]] *)
open Common.Util open Common.Util
open Alcotest open Alcotest
(* Test header:1 ends here *)
(* Test *)
(* [[file:../util.org::*Test][Test:1]] *)
let test_external () = let test_external () =
check (float 1.e-15) "erf" 0.842700792949715 (erf_float 1.0); check (float 1.e-15) "erf" 0.842700792949715 (erf_float 1.0);
check (float 1.e-15) "erf" 0.112462916018285 (erf_float 0.1); check (float 1.e-15) "erf" 0.112462916018285 (erf_float 0.1);
@ -24,7 +33,9 @@ let test_external () =
check int "leadz" 63 (leadz @@ Int64.of_int 1); check int "leadz" 63 (leadz @@ Int64.of_int 1);
check int "leadz" 64 (leadz @@ Int64.of_int 0); check int "leadz" 64 (leadz @@ Int64.of_int 0);
() ()
(* Test:1 ends here *)
(* [[file:../util.org::*General functions][General functions:3]] *)
let test_general () = let test_general () =
check int "of_some_of_int_fast" 1 (of_some (Some 1)) ; check int "of_some_of_int_fast" 1 (of_some (Some 1)) ;
check int "binom" 35 (binom 7 4); check int "binom" 35 (binom 7 4);
@ -33,7 +44,9 @@ let test_general () =
check (float 1.e-15) "pow" 729.0 (pow 3.0 6); check (float 1.e-15) "pow" 729.0 (pow 3.0 6);
check (float 1.e-15) "float_of_int_fast" 10.0 (float_of_int_fast 10); check (float 1.e-15) "float_of_int_fast" 10.0 (float_of_int_fast 10);
() ()
(* General functions:3 ends here *)
(* [[file:../util.org::*Functions related to the Boys function][Functions related to the Boys function:5]] *)
let test_boys () = let test_boys () =
check (float 1.e-15) "incomplete_gamma" 0.0 (incomplete_gamma ~alpha:0.5 0.); check (float 1.e-15) "incomplete_gamma" 0.0 (incomplete_gamma ~alpha:0.5 0.);
check (float 1.e-15) "incomplete_gamma" 1.114707979049507 (incomplete_gamma ~alpha:0.5 0.4); check (float 1.e-15) "incomplete_gamma" 1.114707979049507 (incomplete_gamma ~alpha:0.5 0.4);
@ -48,13 +61,9 @@ let test_boys () =
check (float 1.e-15) "boys" 0.14075053682591263 (boys_function ~maxm:2 0.5).(2); check (float 1.e-15) "boys" 0.14075053682591263 (boys_function ~maxm:2 0.5).(2);
check (float 1.e-15) "boys" 0.00012711171070276764 (boys_function ~maxm:3 15.).(3); check (float 1.e-15) "boys" 0.00012711171070276764 (boys_function ~maxm:3 15.).(3);
() ()
(* Functions related to the Boys function:5 ends here *)
let test_array () = (* [[file:../util.org::*List functions][List functions:3]] *)
check bool "array_range" true ([| 2; 3; 4 |] = array_range 2 4);
check (float 1.e-15) "array_sum" 9. (array_sum [| 2.; 3.; 4. |]);
check (float 1.e-15) "array_product" 24. (array_product [| 2.; 3.; 4. |]);
()
let test_list () = let test_list () =
check bool "list_range" true ([ 2; 3; 4 ] = list_range 2 4); check bool "list_range" true ([ 2; 3; 4 ] = list_range 2 4);
check bool "list_some" true ([ 2; 3; 4 ] = check bool "list_some" true ([ 2; 3; 4 ] =
@ -63,12 +72,25 @@ let test_list () =
[[1; 2; 3]; [4; 5; 6]; [7; 8; 9]; [10; 11; 12]; [13; 14; 15]; [[1; 2; 3]; [4; 5; 6]; [7; 8; 9]; [10; 11; 12]; [13; 14; 15];
[16; 17; 18]; [19; 20]]); [16; 17; 18]; [19; 20]]);
() ()
(* List functions:3 ends here *)
(* [[file:../util.org::*Array functions][Array functions:3]] *)
let test_array () =
check bool "array_range" true ([| 2; 3; 4 |] = array_range 2 4);
check (float 1.e-15) "array_sum" 9. (array_sum [| 2.; 3.; 4. |]);
check (float 1.e-15) "array_product" 24. (array_product [| 2.; 3.; 4. |]);
()
(* Array functions:3 ends here *)
(* Test footer :noexport: *)
(* [[file:../util.org::*Test footer][Test footer:1]] *)
let tests = [ let tests = [
"External", `Quick, test_external; "External", `Quick, test_external;
"General", `Quick, test_general; "General" , `Quick, test_general;
"Array", `Quick, test_array; "Boys" , `Quick, test_boys;
"List", `Quick, test_list; "List" , `Quick, test_list;
"Boys", `Quick, test_boys; "Array" , `Quick, test_array;
] ]
(* Test footer:1 ends here *)

683
common/util.org Normal file
View File

@ -0,0 +1,683 @@
#+begin_src elisp tangle: no :results none :exports none
(setq pwd (file-name-directory buffer-file-name))
(setq name (file-name-nondirectory (substring buffer-file-name 0 -4)))
(setq lib (concat pwd "lib/"))
(setq testdir (concat pwd "test/"))
(setq mli (concat lib name ".mli"))
(setq ml (concat lib name ".ml"))
(setq c (concat lib name ".c"))
(setq test-ml (concat testdir name ".ml"))
(org-babel-tangle)
#+end_src
* Util
:PROPERTIES:
:header-args: :noweb yes :comments both
:END:
Utility functions.
** Test header :noexport:
#+begin_src ocaml :tangle (eval test-ml) :exports none
open Common.Util
open Alcotest
#+end_src
** External C functions
| ~erf_float~ | Error function ~erf~ from =libm= |
| ~erfc_float~ | Complementary error function ~erfc~ from =libm= |
| ~gamma_float~ | Gamma function ~gamma~ from =libm= |
| ~popcnt~ | ~popcnt~ instruction |
| ~trailz~ | ~ctz~ instruction |
| ~leadz~ | ~bsf~ instruction |
#+begin_src c :tangle (eval c) :exports none
#include <math.h>
#include <caml/mlvalues.h>
#include <caml/alloc.h>
#+end_src
*** Erf
#+begin_src c :tangle (eval c) :exports none
CAMLprim value erf_float_bytecode(value x) {
return copy_double(erf(Double_val(x)));
}
CAMLprim double erf_float(double x) {
return erf(x);
}
#+end_src
#+begin_src ocaml :tangle (eval mli)
external erf_float : float -> float = "erf_float_bytecode" "erf_float" [@@unboxed] [@@noalloc]
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
external erf_float : float -> float = "erf_float_bytecode" "erf_float" [@@unboxed] [@@noalloc]
#+end_src
*** Erfc
#+begin_src c :tangle (eval c) :exports none
CAMLprim value erfc_float_bytecode(value x) {
return copy_double(erfc(Double_val(x)));
}
CAMLprim double erfc_float(double x) {
return erfc(x);
}
#+end_src
#+begin_src ocaml :tangle (eval mli)
external erfc_float : float -> float = "erfc_float_bytecode" "erfc_float" [@@unboxed] [@@noalloc]
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
external erfc_float : float -> float = "erfc_float_bytecode" "erfc_float" [@@unboxed] [@@noalloc]
#+end_src
*** Gamma
#+begin_src c :tangle (eval c) :exports none
CAMLprim value gamma_float_bytecode(value x) {
return copy_double(tgamma(Double_val(x)));
}
CAMLprim double gamma_float(double x) {
return tgamma(x);
}
#+end_src
#+begin_src ocaml :tangle (eval mli)
external gamma_float : float -> float = "gamma_float_bytecode" "gamma_float" [@@unboxed] [@@noalloc]
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
external gamma_float : float -> float = "gamma_float_bytecode" "gamma_float" [@@unboxed] [@@noalloc]
#+end_src
*** Popcnt
#+begin_src c :tangle (eval c) :exports none
CAMLprim int32_t popcnt(int64_t i) {
return __builtin_popcountll (i);
}
CAMLprim value popcnt_bytecode(value i) {
return caml_copy_int32(__builtin_popcountll (Int64_val(i)));
}
#+end_src
#+begin_src ocaml :tangle (eval mli)
val popcnt : int64 -> int
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
external popcnt : int64 -> int32 = "popcnt_bytecode" "popcnt"
[@@unboxed] [@@noalloc]
let popcnt i = (popcnt [@inlined] ) i |> Int32.to_int
#+end_src
*** Trailz
#+begin_src c :tangle (eval c) :exports none
CAMLprim int32_t trailz(int64_t i) {
return __builtin_ctzll (i);
}
CAMLprim value trailz_bytecode(value i) {
return caml_copy_int32(__builtin_ctzll (Int64_val(i)));
}
#+end_src
#+begin_src ocaml :tangle (eval mli)
val trailz : int64 -> int
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
external trailz : int64 -> int32 = "trailz_bytecode" "trailz" "int"
[@@unboxed] [@@noalloc]
let trailz i = trailz i |> Int32.to_int
#+end_src
*** Leadz
#+begin_src c :tangle (eval c) :exports none
CAMLprim int32_t leadz(int64_t i) {
return __builtin_clzll(i);
}
CAMLprim value leadz_bytecode(value i) {
return caml_copy_int32(__builtin_clzll (Int64_val(i)));
}
#+end_src
#+begin_src ocaml :tangle (eval mli)
val leadz : int64 -> int
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
external leadz : int64 -> int32 = "leadz_bytecode" "leadz" "int"
[@@unboxed] [@@noalloc]
let leadz i = leadz i |> Int32.to_int
#+end_src
*** Test
#+begin_src ocaml :tangle (eval test-ml) :exports none
let test_external () =
check (float 1.e-15) "erf" 0.842700792949715 (erf_float 1.0);
check (float 1.e-15) "erf" 0.112462916018285 (erf_float 0.1);
check (float 1.e-15) "erf" (-0.112462916018285) (erf_float (-0.1));
check (float 1.e-15) "erfc" 0.157299207050285 (erfc_float 1.0);
check (float 1.e-15) "erfc" 0.887537083981715 (erfc_float 0.1);
check (float 1.e-15) "erfc" (1.112462916018285) (erfc_float (-0.1));
check (float 1.e-14) "gamma" (1.77245385090552) (gamma_float 0.5);
check (float 1.e-14) "gamma" (9.51350769866873) (gamma_float (0.1));
check (float 1.e-14) "gamma" (-3.54490770181103) (gamma_float (-0.5));
check int "popcnt" 6 (popcnt @@ Int64.of_int 63);
check int "popcnt" 8 (popcnt @@ Int64.of_int 299605);
check int "popcnt" 1 (popcnt @@ Int64.of_int 65536);
check int "popcnt" 0 (popcnt @@ Int64.of_int 0);
check int "trailz" 3 (trailz @@ Int64.of_int 8);
check int "trailz" 2 (trailz @@ Int64.of_int 12);
check int "trailz" 0 (trailz @@ Int64.of_int 1);
check int "trailz" 64 (trailz @@ Int64.of_int 0);
check int "leadz" 60 (leadz @@ Int64.of_int 8);
check int "leadz" 60 (leadz @@ Int64.of_int 12);
check int "leadz" 63 (leadz @@ Int64.of_int 1);
check int "leadz" 64 (leadz @@ Int64.of_int 0);
()
#+end_src
** General functions
#+begin_src ocaml :tangle (eval mli)
val fact : int -> float
(* @raise Invalid_argument for negative arguments or arguments >100. *)
val binom : int -> int -> int
val binom_float : int -> int -> float
val chop : float -> (unit -> float) -> float
val pow : float -> int -> float
val float_of_int_fast : int -> float
val not_implemented : unit -> 'a
val of_some : 'a option -> 'a
#+end_src
| ~fact~ | Factorial function. |
| ~binom~ | Binomial coefficient. ~binom n k~ = $C_n^k$ |
| ~binom_float~ | float variant of ~binom~ |
| ~pow~ | Fast implementation of the power function for small integer powers |
| ~chop~ | In ~chop a f~, evaluate ~f~ only if the absolute value of ~a~ is larger than ~Constants.epsilon~, and return ~a *. f ()~. |
| ~float_of_int_fast~ | Faster implementation of float_of_int for small positive ints |
| ~not_implemented~ | Fails with error message if some functionality is not implemented |
| ~of_some~ | Extracts the value of an option |
#+begin_src ocaml :tangle (eval ml) :exports none
let memo_float_of_int =
Array.init 64 float_of_int
let float_of_int_fast i =
if Int.logand i 63 = i then
memo_float_of_int.(i)
else
float_of_int i
let factmax = 150
let fact_memo =
let rec aux accu_l accu = function
| 0 -> (aux [@tailcall]) [1.] 1. 1
| i when (i = factmax) ->
let x = (float_of_int factmax) *. accu in
List.rev (x::accu_l)
| i -> let x = (float_of_int i) *. accu in
(aux [@tailcall]) (x::accu_l) x (i+1)
in
aux [] 0. 0
|> Array.of_list
let fact = function
| i when (i < 0) ->
raise (Invalid_argument "Argument of factorial should be non-negative")
| i when (i > 150) ->
raise (Invalid_argument "Result of factorial is infinite")
| i -> fact_memo.(i)
let binom =
let memo =
let m = Array.make_matrix 64 64 0 in
for n=0 to Array.length m - 1 do
m.(n).(0) <- 1;
m.(n).(n) <- 1;
for k=1 to (n - 1) do
m.(n).(k) <- m.(n-1).(k-1) + m.(n-1).(k)
done
done;
m
in
let rec f n k =
assert (k >= 0);
assert (n >= k);
if k = 0 || k = n then
1
else if n < 64 then
memo.(n).(k)
else
f (n-1) (k-1) + f (n-1) k
in f
let binom_float n k =
binom n k
|> float_of_int_fast
let rec pow a = function
| 0 -> 1.
| 1 -> a
| 2 -> a *. a
| 3 -> a *. a *. a
| -1 -> 1. /. a
| n when n > 0 ->
let b = pow a (n / 2) in
b *. b *. (if n mod 2 = 0 then 1. else a)
| n when n < 0 -> (pow [@tailcall]) (1./.a) (-n)
| _ -> assert false
let chop f g =
if (abs_float f) < Constants.epsilon then 0.
else f *. (g ())
let not_implemented () =
failwith "Not implemented"
let of_some = function
| Some a -> a
| None -> assert false
#+end_src
#+begin_src ocaml :tangle (eval test-ml) :exports none
let test_general () =
check int "of_some_of_int_fast" 1 (of_some (Some 1)) ;
check int "binom" 35 (binom 7 4);
check (float 1.e-15) "fact" 5040. (fact 7);
check (float 1.e-15) "binom_float" 35.0 (binom_float 7 4);
check (float 1.e-15) "pow" 729.0 (pow 3.0 6);
check (float 1.e-15) "float_of_int_fast" 10.0 (float_of_int_fast 10);
()
#+end_src
** Functions related to the Boys function
#+begin_src ocaml :tangle (eval mli)
val incomplete_gamma : alpha:float -> float -> float
(* @raise Failure when the calculation doesn't converge. *)
#+end_src
The lower [[https://en.wikipedia.org/wiki/Incomplete_gamma_function][Incomplete Gamma function]] is implemented :
\[
\gamma(\alpha,x) = \int_0^x e^{-t} t^{\alpha-1} dt
\]
p: $\frac{1}{\Gamma(\alpha)} \int_0^x e^{-t} t^{\alpha-1} dt$
q: $\frac{1}{\Gamma(\alpha)} \int_x^\infty e^{-t} t^{\alpha-1} dt$
Reference : Haruhiko Okumura: C-gengo niyoru saishin algorithm jiten
(New Algorithm handbook in C language) (Gijyutsu hyouron sha,
Tokyo, 1991) p.227 [in Japanese]
#+begin_src ocaml :tangle (eval ml) :exports none
let incomplete_gamma ~alpha x =
assert (alpha >= 0.);
assert (x >= 0.);
let a = alpha in
let a_inv = 1./. a in
let gf = gamma_float alpha in
let loggamma_a = log gf in
let rec p_gamma x =
if x >= 1. +. a then 1. -. q_gamma x
else if x = 0. then 0.
else
let rec pg_loop prev res term k =
if k > 1000. then failwith "p_gamma did not converge."
else if prev = res then res
else
let term = term *. x /. (a +. k) in
(pg_loop [@tailcall]) res (res +. term) term (k +. 1.)
in
let r0 = exp (a *. log x -. x -. loggamma_a) *. a_inv in
pg_loop min_float r0 r0 1.
and q_gamma x =
if x < 1. +. a then 1. -. p_gamma x
else
let rec qg_loop prev res la lb w k =
if k > 1000. then failwith "q_gamma did not converge."
else if prev = res then res
else
let k_inv = 1. /. k in
let kma = (k -. 1. -. a) *. k_inv in
let la, lb =
lb, kma *. (lb -. la) +. (k +. x) *. lb *. k_inv
in
let w = w *. kma in
let prev, res = res, res +. w /. (la *. lb) in
(qg_loop [@tailcall]) prev res la lb w (k +. 1.)
in
let w = exp (a *. log x -. x -. loggamma_a) in
let lb = (1. +. x -. a) in
qg_loop min_float (w /. lb) 1. lb w 2.0
in
gf *. p_gamma x
#+end_src
#+begin_src ocaml :tangle (eval mli)
val boys_function : maxm:int -> float -> float array
#+end_src
The [[https://link.springer.com/article/10.1007/s10910-005-9023-3][Generalized Boys function]] is implemented,
~maxm~ is the maximum total angular momentum.
\[
F_m(x) = \frac{\gamma(m+1/2,x)}{2x^{m+1/2}}
\]
where $\gamma$ is the incomplete gamma function.
- $F_0(0.) = 1$
- $F_0(t) = \frac{\sqrt{\pi}}{2\sqrt{t}} \text{erf} ( \sqrt{t} )$
- $F_m(0.) = \frac{1}{2m+1}$
- $F_m(t) = \frac{\gamma{m+1/2,t}}{2t^{m+1/2}}$
- $F_m(t) = \frac{ 2t\, F_{m+1}(t) + e^{-t} }{2m+1}$
#+begin_src ocaml :tangle (eval ml) :exports none
let boys_function ~maxm t =
assert (t >= 0.);
match maxm with
| 0 ->
begin
if t = 0. then [| 1. |] else
let sq_t = sqrt t in
[| (Constants.sq_pi_over_two /. sq_t) *. erf_float sq_t |]
end
| _ ->
begin
assert (maxm > 0);
let result =
Array.init (maxm+1) (fun m -> 1. /. float_of_int (2*m+1))
in
let power_t_inv = (maxm+maxm+1) in
try
let fmax =
let t_inv = sqrt (1. /. t) in
let n = float_of_int maxm in
let dm = 0.5 +. n in
let f = (pow t_inv power_t_inv ) in
match classify_float f with
| FP_normal -> (incomplete_gamma ~alpha:dm t) *. 0.5 *. f
| FP_zero
| FP_subnormal -> 0.
| _ -> raise Exit
in
let emt = exp (-. t) in
result.(maxm) <- fmax;
for n=maxm-1 downto 0 do
result.(n) <- ( (t+.t) *. result.(n+1) +. emt) *. result.(n)
done;
result
with Exit -> result
end
#+end_src
#+begin_src ocaml :tangle (eval test-ml) :exports none
let test_boys () =
check (float 1.e-15) "incomplete_gamma" 0.0 (incomplete_gamma ~alpha:0.5 0.);
check (float 1.e-15) "incomplete_gamma" 1.114707979049507 (incomplete_gamma ~alpha:0.5 0.4);
check (float 1.e-15) "incomplete_gamma" 1.4936482656248544 (incomplete_gamma ~alpha:0.5 1.);
check (float 1.e-15) "incomplete_gamma" 1.7724401246392805 (incomplete_gamma ~alpha:0.5 10.);
check (float 1.e-15) "incomplete_gamma" 1.7724538509055159 (incomplete_gamma ~alpha:0.5 100.);
check (float 1.e-15) "boys" 1.0 (boys_function ~maxm:0 0.).(0);
check (float 1.e-15) "boys" 0.2 (boys_function ~maxm:2 0.).(2);
check (float 1.e-15) "boys" (1./.3.) (boys_function ~maxm:2 0.).(1);
check (float 1.e-15) "boys" 0.8556243918921488 (boys_function ~maxm:0 0.5).(0);
check (float 1.e-15) "boys" 0.14075053682591263 (boys_function ~maxm:2 0.5).(2);
check (float 1.e-15) "boys" 0.00012711171070276764 (boys_function ~maxm:3 15.).(3);
()
#+end_src
** List functions
#+begin_src ocaml :tangle (eval mli)
val list_some : 'a option list -> 'a list
val list_range : int -> int -> int list
val list_pack : int -> 'a list -> 'a list list
#+end_src
| ~list_some~ | Filters out all ~None~ elements of the list, and returns the elements without the ~Some~ |
| ~list_range~ | Creates a list of consecutive integers |
| ~list_pack~ | ~list_pack n l~ Creates a list of ~n~-elements lists |
#+begin_src ocaml :tangle (eval ml) :exports none
let list_some l =
List.filter (function None -> false | _ -> true) l
|> List.rev_map (function Some x -> x | _ -> assert false)
|> List.rev
let list_range first last =
if last < first then [] else
let rec aux accu = function
| 0 -> first :: accu
| i -> (aux [@tailcall]) ( (first+i)::accu ) (i-1)
in
aux [] (last-first)
let list_pack n l =
assert (n>=0);
let rec aux i accu1 accu2 = function
| [] -> if accu1 = [] then
List.rev accu2
else
List.rev ((List.rev accu1) :: accu2)
| a :: rest ->
match i with
| 0 -> (aux [@tailcall]) (n-1) [] ((List.rev (a::accu1)) :: accu2) rest
| _ -> (aux [@tailcall]) (i-1) (a::accu1) accu2 rest
in
aux (n-1) [] [] l
#+end_src
#+begin_src ocaml :tangle (eval test-ml) :exports none
let test_list () =
check bool "list_range" true ([ 2; 3; 4 ] = list_range 2 4);
check bool "list_some" true ([ 2; 3; 4 ] =
list_some ([ None ; Some 2 ; None ; Some 3 ; None ; None ; Some 4]) );
check bool "list_pack" true (list_pack 3 (list_range 1 20) =
[[1; 2; 3]; [4; 5; 6]; [7; 8; 9]; [10; 11; 12]; [13; 14; 15];
[16; 17; 18]; [19; 20]]);
()
#+end_src
** Array functions
#+begin_src ocaml :tangle (eval mli)
val array_range : int -> int -> int array
val array_sum : float array -> float
val array_product : float array -> float
#+end_src
| ~array_range~ | Creates an array of consecutive integers |
| ~array_sum~ | Returns the sum of all the elements of the array |
| ~array_product~ | Returns the product of all the elements of the array |
#+begin_src ocaml :tangle (eval ml) :exports none
let array_range first last =
if last < first then [| |] else
Array.init (last-first+1) (fun i -> i+first)
let array_sum a =
Array.fold_left ( +. ) 0. a
let array_product a =
Array.fold_left ( *. ) 1. a
#+end_src
#+begin_src ocaml :tangle (eval test-ml) :exports none
let test_array () =
check bool "array_range" true ([| 2; 3; 4 |] = array_range 2 4);
check (float 1.e-15) "array_sum" 9. (array_sum [| 2.; 3.; 4. |]);
check (float 1.e-15) "array_product" 24. (array_product [| 2.; 3.; 4. |]);
()
#+end_src
** Stream functions
#+begin_src ocaml :tangle (eval mli)
val stream_range : int -> int -> int Stream.t
val stream_to_list : 'a Stream.t -> 'a list
val stream_fold : ('a -> 'b -> 'a) -> 'a -> 'b Stream.t -> 'a
#+end_src
| ~stream_range~ | Creates a stream returning consecutive integers |
| ~stream_to_list~ | Read a stream and put items in a list |
| ~stream_fold~ | Apply a fold to the elements of the stream |
#+begin_src ocaml :tangle (eval ml) :exports none
let stream_range first last =
Stream.from (fun i ->
let result = i+first in
if result <= last then
Some result
else None
)
let stream_to_list stream =
let rec aux accu =
let new_accu =
try
Some (Stream.next stream :: accu)
with Stream.Failure -> None
in
match new_accu with
| Some new_accu -> (aux [@tailcall]) new_accu
| None -> accu
in List.rev @@ aux []
let stream_fold f init stream =
let rec aux accu =
let new_accu =
try
let element = Stream.next stream in
Some (f accu element)
with Stream.Failure -> None
in
match new_accu with
| Some new_accu -> (aux [@tailcall]) new_accu
| None -> accu
in
aux init
#+end_src
** Printers
#+begin_src ocaml :tangle (eval mli)
val pp_float_array_size : Format.formatter -> float array -> unit
val pp_float_array : Format.formatter -> float array -> unit
val pp_float_2darray_size : Format.formatter -> float array array -> unit
val pp_float_2darray : Format.formatter -> float array array -> unit
val pp_bitstring : int -> Format.formatter -> Z.t -> unit
#+end_src
| ~pp_float_array~ | Printer for float arrays |
| ~pp_float_array_size~ | Printer for float arrays with size |
| ~pp_float_2darray~ | Printer for matrices |
| ~pp_float_2darray_size~ | Printer for matrices with size |
| ~pp_bitstring~ | Printer for bit strings (used by ~Bitstring~ module) |
#+begin_example
pp_float_array_size:
[ 6: 1.000000 1.732051 1.732051 1.000000 1.732051 1.000000 ]
pp_float_array:
[ 1.000000 1.732051 1.732051 1.000000 1.732051 1.000000 ]
pp_float_2darray_size
[
2:[ 6: 1.000000 1.732051 1.732051 1.000000 1.732051 1.000000 ]
[ 4: 1.000000 2.000000 3.000000 4.000000 ] ]
pp_float_2darray:
[ [ 1.000000 1.732051 1.732051 1.000000 1.732051 1.000000 ]
[ 1.000000 2.000000 3.000000 4.000000 ] ]
pp_bitstring 14:
+++++------+--
#+end_example
#+begin_src ocaml :tangle (eval ml) :exports none
let pp_float_array ppf a =
Format.fprintf ppf "@[<2>[@ ";
Array.iter (fun f -> Format.fprintf ppf "@[%10f@]@ " f) a;
Format.fprintf ppf "]@]"
let pp_float_array_size ppf a =
Format.fprintf ppf "@[<2>@[ %d:@[<2>" (Array.length a);
Array.iter (fun f -> Format.fprintf ppf "@[%10f@]@ " f) a;
Format.fprintf ppf "]@]@]"
let pp_float_2darray ppf a =
Format.fprintf ppf "@[<2>[@ ";
Array.iter (fun f -> Format.fprintf ppf "@[%a@]@ " pp_float_array f) a;
Format.fprintf ppf "]@]"
let pp_float_2darray_size ppf a =
Format.fprintf ppf "@[<2>@[ %d:@[" (Array.length a);
Array.iter (fun f -> Format.fprintf ppf "@[%a@]@ " pp_float_array_size f) a;
Format.fprintf ppf "]@]@]"
let pp_bitstring n ppf bs =
String.init n (fun i -> if (Z.testbit bs i) then '+' else '-')
|> Format.fprintf ppf "@[<h>%s@]"
#+end_src
** Test footer :noexport:
#+begin_src ocaml :tangle (eval test-ml) :exports none
let tests = [
"External", `Quick, test_external;
"General" , `Quick, test_general;
"Boys" , `Quick, test_boys;
"List" , `Quick, test_list;
"Array" , `Quick, test_array;
]
#+end_src

346
common/zkey.org Normal file
View File

@ -0,0 +1,346 @@
#+begin_src elisp tangle: no :results none :exports none
(setq pwd (file-name-directory buffer-file-name))
(setq name (file-name-nondirectory (substring buffer-file-name 0 -4)))
(setq lib (concat pwd "lib/"))
(setq testdir (concat pwd "test/"))
(setq mli (concat lib name ".mli"))
(setq ml (concat lib name ".ml"))
(setq test-ml (concat testdir name ".ml"))
(org-babel-tangle)
#+end_src
* Zkey
:PROPERTIES:
:header-args: :noweb yes :comments both
:END:
Encodes the powers of x, y, z in a compact form, suitable for being
used as keys in a hash table.
Internally, the ~Zkey.t~ is made of two integers, ~left~ and ~right~.
The small integers x, y and z are stored compactly in this 126-bits
space:
#+begin_example
Left Right
3 [--------------------------------------------------------------] [------------------|---------------|---------------|---------------]
x y z
6 [--------------------------------------------------------------] [---|----------|----------|----------|----------|----------|---------]
x1 y1 z1 x2 y2 z2
9 [---------------------------------|----------|----------|---------] [---|----------|----------|----------|----------|----------|---------]
x1 y1 z1 x2 y2 z2 x3 y3 z3
12 [---|----------|----------|----------|----------|----------|---------] [---|----------|----------|----------|----------|----------|---------]
x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4
#+end_example
The values of x,y,z should be positive and should not exceed 32767 for
~kind=3~. For all other kinds kinds the values should not exceed 1023.
** Types
#+begin_src ocaml :tangle (eval mli)
type t
type kind =
| Three of Powers.t
| Four of (int * int * int * int)
| Six of (Powers.t * Powers.t)
| Nine of (Powers.t * Powers.t * Powers.t)
| Twelve of (Powers.t * Powers.t * Powers.t * Powers.t)
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
type t =
{
mutable left : int;
mutable right : int;
kind : int ;
}
open Powers
type kind =
| Three of Powers.t
| Four of (int * int * int * int)
| Six of (Powers.t * Powers.t)
| Nine of (Powers.t * Powers.t * Powers.t)
| Twelve of (Powers.t * Powers.t * Powers.t * Powers.t)
#+end_src
** Conversions
#+begin_src ocaml :tangle (eval mli)
val of_powers_three : Powers.t -> t
val of_powers_six : Powers.t -> Powers.t -> t
val of_powers_nine : Powers.t -> Powers.t -> Powers.t -> t
val of_powers_twelve : Powers.t -> Powers.t -> Powers.t -> Powers.t -> t
val of_powers : kind -> t
val of_int_array : int array -> t
val of_int_four : int -> int -> int -> int -> t
val to_int_array : t -> int array
val to_powers : t -> kind
val to_string : t -> string
#+end_src
| ~of_powers_three | Create from a ~Powers.t~ |
| ~of_powers_six | Create from two ~Powers.t~ |
| ~of_powers_nine | Create from three ~Powers.t~ |
| ~of_powers_twelve | Create from four ~Powers.t~ |
| ~of_powers | Create using the ~kind~ type |
| ~of_int_array | Convert from an ~int~ array |
| ~of_int_four | Create from four ~ints~ |
| ~to_int_array | Convert to an ~int~ array |
| ~to_powers | Convert to an ~Powers.t~ array |
| ~to_string | Pretty printing |
#+begin_src ocaml :tangle (eval ml) :exports none
(** Creates a Zkey. *)
let make ~kind right =
{ left = 0 ; right ; kind }
(** Move [right] to [left] and set [right = x] *)
let (<|) z x =
z.left <- z.right;
z.right <- x;
z
(** Shift left [right] by 10 bits, and add [x]. *)
let (<<) z x =
z.right <- (z.right lsl 10) lor x ;
z
(** Shift left [right] by 10 bits, and add [x]. *)
let (<+) z x =
z.right <- (z.right lsl 15) lor x ;
z
let of_powers_three { x=a ; y=b ; z=c ; _ } =
assert (
let alpha = a lor b lor c in
alpha >= 0 && alpha < (1 lsl 15)
);
make ~kind:3 a <+ b <+ c
let of_int_four i j k l =
assert (
let alpha = i lor j lor k lor l in
alpha >= 0 && alpha < (1 lsl 15)
);
make ~kind:4 i <+ j <+ k <+ l
let of_powers_six { x=a ; y=b ; z=c ; _ } { x=d ; y=e ; z=f ; _ } =
assert (
let alpha = a lor b lor c lor d lor e lor f in
alpha >= 0 && alpha < (1 lsl 10)
);
make ~kind:6 a << b << c << d << e << f
let of_powers_nine { x=a ; y=b ; z=c ; _ } { x=d ; y=e ; z=f ; _ }
{ x=g ; y=h ; z=i ; _ } =
assert (
let alpha = a lor b lor c lor d lor e lor f lor g lor h lor i in
alpha >= 0 && alpha < (1 lsl 10)
);
make ~kind:9 a << b << c << d << e << f
<| g << h << i
let of_powers_twelve { x=a ; y=b ; z=c ; _ } { x=d ; y=e ; z=f ; _ }
{ x=g ; y=h ; z=i ; _ } { x=j ; y=k ; z=l ; _ } =
assert (
let alpha = a lor b lor c lor d lor e lor f
lor g lor h lor i lor j lor k lor l
in
alpha >= 0 && alpha < (1 lsl 10)
);
make ~kind:12 a << b << c << d << e << f
<| g << h << i << j << k << l
let of_powers a =
match a with
| Three a -> of_powers_three a
| Six (a,b) -> of_powers_six a b
| Twelve (a,b,c,d) -> of_powers_twelve a b c d
| Nine (a,b,c) -> of_powers_nine a b c
| _ -> invalid_arg "of_powers"
let mask10 = 0x3ff
and mask15 = 0x7fff
let of_int_array = function
| [| a ; b ; c ; d |] -> of_int_four a b c d
| _ -> invalid_arg "of_int_array"
(** Transform the Zkey into an int array *)
let to_int_array { left ; right ; kind } =
match kind with
| 3 -> [|
mask15 land (right lsr 30) ;
mask15 land (right lsr 15) ;
mask15 land right
|]
| 4 -> [|
mask15 land (right lsr 45) ;
mask15 land (right lsr 30) ;
mask15 land (right lsr 15) ;
mask15 land right
|]
| 6 -> [|
mask10 land (right lsr 50) ;
mask10 land (right lsr 40) ;
mask10 land (right lsr 30) ;
mask10 land (right lsr 20) ;
mask10 land (right lsr 10) ;
mask10 land right
|]
| 12 -> [|
mask10 land (left lsr 50) ;
mask10 land (left lsr 40) ;
mask10 land (left lsr 30) ;
mask10 land (left lsr 20) ;
mask10 land (left lsr 10) ;
mask10 land left ;
mask10 land (right lsr 50) ;
mask10 land (right lsr 40) ;
mask10 land (right lsr 30) ;
mask10 land (right lsr 20) ;
mask10 land (right lsr 10) ;
mask10 land right
|]
| 9 -> [|
mask10 land (left lsr 20) ;
mask10 land (left lsr 10) ;
mask10 land left ;
mask10 land (right lsr 50) ;
mask10 land (right lsr 40) ;
mask10 land (right lsr 30) ;
mask10 land (right lsr 20) ;
mask10 land (right lsr 10) ;
mask10 land right
|]
| _ -> invalid_arg (__FILE__^": to_int_array")
(** Transform the Zkey into an int tuple *)
let to_powers { left ; right ; kind } =
match kind with
| 3 -> Three (Powers.of_int_tuple (
mask15 land (right lsr 30) ,
mask15 land (right lsr 15) ,
mask15 land right
))
| 6 -> Six (Powers.of_int_tuple
( mask10 land (right lsr 50) ,
mask10 land (right lsr 40) ,
mask10 land (right lsr 30)),
Powers.of_int_tuple
( mask10 land (right lsr 20) ,
mask10 land (right lsr 10) ,
mask10 land right )
)
| 12 -> Twelve (Powers.of_int_tuple
( mask10 land (left lsr 50) ,
mask10 land (left lsr 40) ,
mask10 land (left lsr 30)),
Powers.of_int_tuple
( mask10 land (left lsr 20) ,
mask10 land (left lsr 10) ,
mask10 land left ) ,
Powers.of_int_tuple
( mask10 land (right lsr 50) ,
mask10 land (right lsr 40) ,
mask10 land (right lsr 30)),
Powers.of_int_tuple
( mask10 land (right lsr 20) ,
mask10 land (right lsr 10) ,
mask10 land right )
)
| 9 -> Nine (Powers.of_int_tuple
( mask10 land (left lsr 20) ,
mask10 land (left lsr 10) ,
mask10 land left ) ,
Powers.of_int_tuple
( mask10 land (right lsr 50) ,
mask10 land (right lsr 40) ,
mask10 land (right lsr 30)),
Powers.of_int_tuple
( mask10 land (right lsr 20) ,
mask10 land (right lsr 10) ,
mask10 land right )
)
| _ -> invalid_arg (__FILE__^": to_powers")
#+end_src
** Functions for hash tables
#+begin_src ocaml :tangle (eval mli)
val hash : t -> int
val equal : t -> t -> bool
val compare : t -> t -> int
#+end_src
| ~hash~ | Associates a nonnegative integer to any Zkey |
| ~equal~ | The equal function. True if two Zkeys are equal |
| ~compare~ | Comparison function, used for sorting |
#+begin_src ocaml :tangle (eval ml) :exports none
let hash = Hashtbl.hash
let equal
{ right = r1 ; left = l1 ; kind = k1 }
{ right = r2 ; left = l2 ; kind = k2 } =
r1 = r2 && l1 = l2 && k1 = k2
let compare
{ right = r1 ; left = l1 ; kind = k1 }
{ right = r2 ; left = l2 ; kind = k2 } =
if k1 <> k2 then invalid_arg (__FILE__^": cmp");
if r1 < r2 then -1
else if r1 > r2 then 1
else if l1 < l2 then -1
else if l1 > l2 then 1
else 0
let to_string { left ; right ; kind } =
"< " ^ string_of_int left ^ string_of_int right ^ " | " ^ (
to_int_array { left ; right ; kind }
|> Array.map string_of_int
|> Array.to_list
|> String.concat ", "
) ^ " >"
#+end_src
** Printers
#+begin_src ocaml :tangle (eval mli)
val pp : Format.formatter -> t -> unit
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
let pp ppf t =
Format.fprintf ppf "@[%s@]" (to_string t)
#+end_src

29
common/zmap.org Normal file
View File

@ -0,0 +1,29 @@
#+begin_src elisp tangle: no :results none :exports none
(setq pwd (file-name-directory buffer-file-name))
(setq name (file-name-nondirectory (substring buffer-file-name 0 -4)))
(setq lib (concat pwd "lib/"))
(setq testdir (concat pwd "test/"))
(setq mli (concat lib name ".mli"))
(setq ml (concat lib name ".ml"))
(setq test-ml (concat testdir name ".ml"))
(org-babel-tangle)
#+end_src
* Zmap
:PROPERTIES:
:header-args: :noweb yes :comments both
:END:
A hash table where the keys are ~Zkey~
** Type
#+begin_src ocaml :tangle (eval mli)
include module type of Hashtbl.Make(Zkey)
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
module Zmap = Hashtbl.Make(Zkey)
include Zmap
#+end_src

View File

@ -72,6 +72,7 @@ with class 'color and highest min-color value."
(setq org-html-htmlize-output-type 'css) ; default: 'inline-css (setq org-html-htmlize-output-type 'css) ; default: 'inline-css
(setq org-html-htmlize-font-prefix "org-") ; default: "org-" (setq org-html-htmlize-font-prefix "org-") ; default: "org-"
(setq c "c")
(setq ml "ml") (setq ml "ml")
(setq mli "mli") (setq mli "mli")
(setq test-ml "test-ml") (setq test-ml "test-ml")

View File

@ -4,7 +4,7 @@
let test_suites: unit Alcotest.test list = [ let test_suites: unit Alcotest.test list = [
"Common.Bitstring", Test_common.Bitstring.tests; "Common.Bitstring", Test_common.Bitstring.tests;
"Common.Util", Test_common.Math_functions.tests; "Common.Util", Test_common.Util.tests;
"Linear_algebra.Vector", Test_linear_algebra.Vector.tests; "Linear_algebra.Vector", Test_linear_algebra.Vector.tests;
"Particles.Nuclei", Test_particles.Nuclei.tests; "Particles.Nuclei", Test_particles.Nuclei.tests;
"Particles.Electrons", Test_particles.Electrons.tests; "Particles.Electrons", Test_particles.Electrons.tests;