From be8b2d8b2b4673272aaa787fd8d2794756912504 Mon Sep 17 00:00:00 2001 From: Anthony Scemama Date: Thu, 5 Dec 2019 15:10:14 +0100 Subject: [PATCH] Fixed DIIS --- SCF/HartreeFock.ml | 47 +++++++++++++++++++++++++++++++--------------- Utils/DIIS.mli | 2 +- 2 files changed, 33 insertions(+), 16 deletions(-) diff --git a/SCF/HartreeFock.ml b/SCF/HartreeFock.ml index c43111d..0bc46ed 100644 --- a/SCF/HartreeFock.ml +++ b/SCF/HartreeFock.ml @@ -319,17 +319,27 @@ let make xt_o_x (Mat.sub fps spf) m_X in + let diis, m_F_diis = + let diis = + DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis + in + + try + let m_F_diis = + let x = + Bigarray.genarray_of_array1 (DIIS.next diis) + in + Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho) + in + diis, m_F_diis + + with Failure _ -> (* Failure in DIIS.next *) + DIIS.make (), m_F_ortho + in let diis = DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis in - let m_F_diis = - let x = - Bigarray.genarray_of_array1 (DIIS.next diis) - in - Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho) - in - (* MOs in orthogonal MO basis *) let m_C', _ = @@ -515,15 +525,22 @@ let make xt_o_x (Mat.sub fps spf) m_X in - let diis = - DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis - in - - let m_F_diis = - let x = - Bigarray.genarray_of_array1 (DIIS.next diis) + let diis, m_F_diis = + let diis = + DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis in - Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho) + + try + let m_F_diis = + let x = + Bigarray.genarray_of_array1 (DIIS.next diis) + in + Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho) + in + diis, m_F_diis + + with Failure _ -> (* Failure in DIIS.next *) + DIIS.make (), m_F_ortho in diff --git a/Utils/DIIS.mli b/Utils/DIIS.mli index 9f1ce66..e658508 100644 --- a/Utils/DIIS.mli +++ b/Utils/DIIS.mli @@ -9,7 +9,7 @@ The DIIS approximate solution for iteration {% $m+1$ %} is given by {% \begin{align*} \mathbf{p}_{m+1} & = \sum_{i=1}^m c_i (\mathbf{p}^f + \mathbf{e}_i) \\ - & = \sum_{i=1}^m c_i \mathbf{p}^f + \sum_i c_i \mathbf{e}_i + & = \sum_{i=1}^m c_i \mathbf{p}^f + \sum_i c_i \mathbf{e}_i \end{align*} %} where {% $\mathbf{p}^f$ %} is the exact solution. One wants to minimize the