mirror of
https://gitlab.com/scemama/QCaml.git
synced 2024-11-18 12:03:40 +01:00
Fixed DIIS
This commit is contained in:
parent
1db40e023f
commit
be8b2d8b2b
@ -319,17 +319,27 @@ let make
|
||||
xt_o_x (Mat.sub fps spf) m_X
|
||||
in
|
||||
|
||||
let diis, m_F_diis =
|
||||
let diis =
|
||||
DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis
|
||||
in
|
||||
|
||||
try
|
||||
let m_F_diis =
|
||||
let x =
|
||||
Bigarray.genarray_of_array1 (DIIS.next diis)
|
||||
in
|
||||
Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho)
|
||||
in
|
||||
diis, m_F_diis
|
||||
|
||||
with Failure _ -> (* Failure in DIIS.next *)
|
||||
DIIS.make (), m_F_ortho
|
||||
in
|
||||
let diis =
|
||||
DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis
|
||||
in
|
||||
|
||||
let m_F_diis =
|
||||
let x =
|
||||
Bigarray.genarray_of_array1 (DIIS.next diis)
|
||||
in
|
||||
Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho)
|
||||
in
|
||||
|
||||
|
||||
(* MOs in orthogonal MO basis *)
|
||||
let m_C', _ =
|
||||
@ -515,15 +525,22 @@ let make
|
||||
xt_o_x (Mat.sub fps spf) m_X
|
||||
in
|
||||
|
||||
let diis =
|
||||
DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis
|
||||
in
|
||||
|
||||
let m_F_diis =
|
||||
let x =
|
||||
Bigarray.genarray_of_array1 (DIIS.next diis)
|
||||
let diis, m_F_diis =
|
||||
let diis =
|
||||
DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis
|
||||
in
|
||||
Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho)
|
||||
|
||||
try
|
||||
let m_F_diis =
|
||||
let x =
|
||||
Bigarray.genarray_of_array1 (DIIS.next diis)
|
||||
in
|
||||
Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho)
|
||||
in
|
||||
diis, m_F_diis
|
||||
|
||||
with Failure _ -> (* Failure in DIIS.next *)
|
||||
DIIS.make (), m_F_ortho
|
||||
in
|
||||
|
||||
|
||||
|
@ -9,7 +9,7 @@ The DIIS approximate solution for iteration {% $m+1$ %} is given by
|
||||
|
||||
{% \begin{align*}
|
||||
\mathbf{p}_{m+1} & = \sum_{i=1}^m c_i (\mathbf{p}^f + \mathbf{e}_i) \\
|
||||
& = \sum_{i=1}^m c_i \mathbf{p}^f + \sum_i c_i \mathbf{e}_i
|
||||
& = \sum_{i=1}^m c_i \mathbf{p}^f + \sum_i c_i \mathbf{e}_i
|
||||
\end{align*} %}
|
||||
|
||||
where {% $\mathbf{p}^f$ %} is the exact solution. One wants to minimize the
|
||||
|
Loading…
Reference in New Issue
Block a user