10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2025-01-03 01:55:40 +01:00
This commit is contained in:
Anthony Scemama 2019-02-26 11:58:53 +01:00
parent 4452d445f5
commit b83b23913e
11 changed files with 589 additions and 61 deletions

View File

@ -5,16 +5,16 @@ module Ds = Determinant_space
type t =
{
det_space : Ds.t ;
h_matrix : Mat.t lazy_t ;
s2_matrix : Mat.t lazy_t ;
m_H : Mat.t lazy_t ;
m_S2 : Mat.t lazy_t ;
eigensystem : (Mat.t * Vec.t) lazy_t;
}
let det_space t = t.det_space
let h_matrix t = Lazy.force t.h_matrix
let m_H t = Lazy.force t.m_H
let s2_matrix t = Lazy.force t.s2_matrix
let m_S2 t = Lazy.force t.m_S2
let eigensystem t = Lazy.force t.eigensystem
@ -54,7 +54,7 @@ let make det_space =
let det = Ds.determinants det_space in
let mo_basis = Ds.mo_basis det_space in
(*
let h_matrix = lazy (
let m_H = lazy (
Util.list_range 0 (ndet-1)
|> List.map (fun i -> let ki = det.(i) in
Array.init ndet (fun j -> let kj = det.(j) in
@ -66,7 +66,7 @@ let make det_space =
in
*)
(*
let h_matrix = lazy (
let m_H = lazy (
let ntasks = int_of_float @@ sqrt @@ float_of_int ndet in
List.init ntasks (fun i ->
let m =
@ -93,7 +93,7 @@ let make det_space =
|> Mat.of_col_vecs_list
) in
*)
let h_matrix = lazy (
let m_H = lazy (
let h =
if Parallel.master then
Array.make_matrix ndet ndet 0.
@ -120,7 +120,7 @@ let make det_space =
List.iter (fun (i,j,x) -> h.{i+1,j+1} <- x) l);
Parallel.broadcast (lazy h)
) in
let s2_matrix = lazy (
let m_S2 = lazy (
Array.init ndet (fun i -> let ki = det.(i) in
Array.init ndet (fun j -> let kj = det.(j) in
CIMatrixElement.make_s2 ki kj
@ -129,10 +129,10 @@ let make det_space =
)
in
let eigensystem = lazy (
let h_matrix = Lazy.force h_matrix in
let m_H = Lazy.force m_H in
Parallel.broadcast @@
lazy (Util.diagonalize_symm h_matrix)
lazy (Util.diagonalize_symm m_H)
)
in
{ det_space ; h_matrix ; s2_matrix ; eigensystem }
{ det_space ; m_H ; m_S2 ; eigensystem }

View File

@ -45,8 +45,7 @@ let mo_matrix_of_ao_matrix ~mo_coef ao_matrix =
let ao_matrix_of_mo_matrix ~mo_coef ~ao_overlap mo_matrix =
let sc = gemm ao_overlap mo_coef in
gemm sc @@
gemm ~transb:`T mo_matrix sc
x_o_xt ~x:sc ~o:mo_matrix
let four_index_transform ~mo_coef eri_ao =

View File

@ -12,11 +12,16 @@ type t =
exchange : Mat.t ;
}
let fock t = t.fock
let core t = t.core
let coulomb t = t.coulomb
let exchange t = t.exchange
module Ao = AOBasis
let make ~density ?(threshold=Constants.epsilon) ao_basis =
let make_rhf ~density ?(threshold=Constants.epsilon) ao_basis =
let m_P = density
and m_T = Ao.kin_ints ao_basis |> KinInt.matrix
and m_V = Ao.eN_ints ao_basis |> NucInt.matrix
@ -41,47 +46,47 @@ let make ~density ?(threshold=Constants.epsilon) ao_basis =
match (abs_float pJ > threshold , abs_float pK > threshold, nu < sigma) with
| (false, false, _) -> ()
| (true , true , true) ->
begin
for mu = 1 to nu do
let integral =
ERI.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) -. pK *. integral
end
done;
for mu = nu+1 to sigma do
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) -. pK *.
ERI.get_phys m_G mu lambda nu sigma
done
end
| (true , true , false) ->
begin
for mu = 1 to sigma do
let integral =
ERI.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) -. pK *. integral
end
done;
for mu = sigma+1 to nu do
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *.
ERI.get_phys m_G mu lambda nu sigma
done
end
| (false, true , _) ->
for mu = 1 to sigma do
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) -. pK *.
ERI.get_phys m_G mu lambda nu sigma
done
| (true , false, _) ->
begin
for mu = 1 to nu do
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *.
ERI.get_phys m_G mu lambda nu sigma
let integral =
ERI.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) -. pK *. integral
end
done;
for mu = nu+1 to sigma do
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) -. pK *.
ERI.get_phys m_G mu lambda nu sigma
done
end
| (true , true , false) ->
begin
for mu = 1 to sigma do
let integral =
ERI.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) -. pK *. integral
end
done;
for mu = sigma+1 to nu do
m_Jnu.(mu-1) <-
m_Jnu.(mu-1) +. pJ *. ERI.get_phys m_G mu lambda nu sigma
done
end
| (false, true , _) ->
for mu = 1 to sigma do
m_Ksigma.(mu-1) <-
m_Ksigma.(mu-1) -. pK *. ERI.get_phys m_G mu lambda nu sigma
done
| (true , false, _) ->
for mu = 1 to nu do
m_Jnu.(mu-1) <-
m_Jnu.(mu-1) +. pJ *. ERI.get_phys m_G mu lambda nu sigma
done
done
done;
for mu = 1 to sigma-1 do
@ -103,7 +108,100 @@ let make ~density ?(threshold=Constants.epsilon) ao_basis =
let make_uhf ~density_same ~density_other ?(threshold=Constants.epsilon) ao_basis =
let m_P_a = density_same
and m_P_b = density_other
and m_T = Ao.kin_ints ao_basis |> KinInt.matrix
and m_V = Ao.eN_ints ao_basis |> NucInt.matrix
and m_G = Ao.ee_ints ao_basis
in
let nBas = Mat.dim1 m_T
in
let m_Hc = Mat.add m_T m_V
and m_J = Array.make_matrix nBas nBas 0.
and m_K = Array.make_matrix nBas nBas 0.
in
for sigma = 1 to nBas do
let m_Ksigma = m_K.(sigma-1) in
for nu = 1 to nBas do
let m_Jnu = m_J.(nu-1) in
for lambda = 1 to nBas do
let pJ = m_P_a.{lambda,sigma} +. m_P_b.{lambda,sigma}
and pK = m_P_a.{lambda,nu}
in
match (abs_float pJ > threshold , abs_float pK > threshold, nu < sigma) with
| (false, false, _) -> ()
| (true , true , true) ->
begin
for mu = 1 to nu do
let integral =
ERI.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) -. pK *. integral
end
done;
for mu = nu+1 to sigma do
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) -. pK *.
ERI.get_phys m_G mu lambda nu sigma
done
end
| (true , true , false) ->
begin
for mu = 1 to sigma do
let integral =
ERI.get_phys m_G mu lambda nu sigma
in
if (integral <> 0.) then begin
m_Jnu.(mu-1) <- m_Jnu.(mu-1) +. pJ *. integral;
m_Ksigma.(mu-1) <- m_Ksigma.(mu-1) -. pK *. integral
end
done;
for mu = sigma+1 to nu do
m_Jnu.(mu-1) <-
m_Jnu.(mu-1) +. pJ *. ERI.get_phys m_G mu lambda nu sigma
done
end
| (false, true , _) ->
for mu = 1 to sigma do
m_Ksigma.(mu-1) <-
m_Ksigma.(mu-1) -. pK *. ERI.get_phys m_G mu lambda nu sigma
done
| (true , false, _) ->
for mu = 1 to nu do
m_Jnu.(mu-1) <-
m_Jnu.(mu-1) +. pJ *. ERI.get_phys m_G mu lambda nu sigma
done
done
done;
for mu = 1 to sigma-1 do
m_K.(mu-1).(sigma-1) <- m_Ksigma.(mu-1);
done
done;
for nu = 1 to nBas do
let m_Jnu = m_J.(nu-1) in
for mu = 1 to nu-1 do
m_J.(mu-1).(nu-1) <- m_Jnu.(mu-1)
done
done;
let m_J = Mat.of_array m_J
and m_K = Mat.of_array m_K
in
{ fock = Mat.add m_Hc (Mat.add m_J m_K) ;
core = m_Hc ; coulomb = m_J ; exchange = m_K }
let op ~f f1 f2 =
assert (f1.core = f2.core);
let m_Hc = f1.core
and m_J = f f1.coulomb f2.coulomb
and m_K = f f1.exchange f2.exchange
@ -117,8 +215,24 @@ let op ~f f1 f2 =
let add = op ~f:(fun a b -> Mat.add a b)
let sub = op ~f:(fun a b -> Mat.sub a b)
let scale alpha f1 =
let m_Hc = f1.core
and m_J = lacpy f1.coulomb
and m_K = lacpy f1.exchange
in
Mat.scal alpha m_J;
Mat.scal alpha m_K;
{
fock = Mat.add m_Hc (Mat.add m_J m_K);
core = m_Hc;
coulomb = m_J;
exchange = m_K;
}
let pp_fock ppf a =
Format.fprintf ppf "@[<2>";

50
SCF/Fock.mli Normal file
View File

@ -0,0 +1,50 @@
(** Type for the Fock operator in AO basis. *)
open Lacaml.D
type t
(** {1 Accessors} *)
val fock : t -> Mat.t
(** Fock matrix in AO basis *)
val core : t -> Mat.t
(** Core Hamiltonian : {% $\langle i | \hat{h} | j \rangle$ %} *)
val coulomb : t -> Mat.t
(** Coulomb matrix : {% $\langle i | J | j \rangle$ %} *)
val exchange : t -> Mat.t
(** Exchange matrix : {% $\langle i | K | j \rangle$ %} *)
(** {1 Creators} *)
val make_rhf : density:Mat.t -> ?threshold:float -> AOBasis.t -> t
(** Create a Fock operator in the RHF formalism. Expected density is
{% $2 \mathbf{C\, C}^\dagger$ %}. [threshold] is a threshold on the
integrals. *)
val make_uhf : density_same: Mat.t -> density_other:Mat.t -> ?threshold:float ->
AOBasis.t -> t
(** Create a Fock operator in the UHF formalism. Expected density is
{% $\mathbf{C\, C}^\dagger$ %}. When building the {% $\alpha$ %} Fock
operator, [density_same] is the {% $\alpha$ %} density and [density_other]
is the {% $\beta$ %} density. [threshold] is a threshold on the integrals. *)
(** {1 Operations} *)
val add : t -> t -> t
(** Add two Fock operators sharing the same core Hamiltonian. *)
val sub : t -> t -> t
(** Subtract two Fock operators sharing the same core Hamiltonian. *)
(** {1 Printers} *)
val pp_fock : Format.formatter -> t -> unit

View File

@ -34,8 +34,8 @@ let huckel_guess ao_basis =
| 0 -> invalid_arg "Huckel guess needs a non-zero number of occupied MOs."
| nocc ->
let density = gemm ~alpha:2. ~transb:`T ~k:nocc m_X m_X in
let fock = Fock.make ~density ao_basis in
let m_F = fock.Fock.fock in
let f = Fock.make_rhf ~density ao_basis in
let m_F = Fock.fock f in
for j=1 to ao_num do
for i=1 to ao_num do
if (i <> j) then

View File

@ -4,7 +4,7 @@ let make ?guess simulation =
if Electrons.multiplicity @@ Simulation.electrons simulation = 1 then
RHF.make ?guess simulation
else
invalid_arg "UHF or ROHF not implemented"
ROHF.make ?guess simulation
let to_string = HartreeFock_type.to_string

View File

@ -65,14 +65,14 @@ let make ?guess:(guess=`Huckel) ?max_scf:(max_scf=64) ?level_shift:(level_shift=
match fock_prev, threshold > 100. *. threshold_SCF with
| Some fock_prev, true ->
let threshold = 1.e-8 in
Fock.make ~density:(Mat.sub m_P m_P_prev) ~threshold ao_basis
Fock.make_rhf ~density:(Mat.sub m_P m_P_prev) ~threshold ao_basis
|> Fock.add fock_prev
| _ -> Fock.make ~density:m_P ao_basis
| _ -> Fock.make_rhf ~density:m_P ao_basis
in
let m_F, m_Hc, m_J, m_K =
let x = fock in
x.Fock.fock, x.Fock.core, x.Fock.coulomb, x.Fock.exchange
Fock.(fock x, core x, coulomb x, exchange x)
in
(* Add level shift in AO basis *)

290
SCF/ROHF.ml Normal file
View File

@ -0,0 +1,290 @@
open Util
open Constants
open Lacaml.D
module Si = Simulation
module El = Electrons
module Ao = AOBasis
module Ov = Overlap
let make ?guess:(guess=`Huckel) ?max_scf:(max_scf=64) ?level_shift:(level_shift=0.1)
?threshold_SCF:(threshold_SCF=1.e-5) simulation =
(* Number of occupied MOs *)
let n_alfa =
El.n_alfa @@ Si.electrons simulation
in
let nocc = n_alfa in
let n_beta =
El.n_beta @@ Si.electrons simulation
in
let nuclear_repulsion =
Si.nuclear_repulsion simulation
in
let ao_basis =
Si.ao_basis simulation
in
(* Initial guess *)
let guess =
Guess.make ~nocc ~guess ao_basis
in
(* Orthogonalization matrix *)
let m_X =
Ao.ortho ao_basis
in
(* Overlap matrix *)
let m_S =
Ao.overlap ao_basis
|> Ov.matrix
in
let m_T = Ao.kin_ints ao_basis |> KinInt.matrix
and m_V = Ao.eN_ints ao_basis |> NucInt.matrix
in
(* Level shift in MO basis *)
let m_LSmo =
Array.init (Mat.dim2 m_X) (fun i ->
if i > n_alfa then level_shift else 0.)
|> Vec.of_array
|> Mat.of_diag
in
(* SCF iterations *)
let rec loop nSCF iterations energy_prev m_C m_P_a_prev m_P_b_prev fock_a_prev fock_b_prev threshold diis =
(* Density matrix *)
let m_P_a =
gemm ~alpha:1. ~transb:`T ~k:n_alfa m_C m_C
in
let m_P_b =
gemm ~alpha:1. ~transb:`T ~k:n_beta m_C m_C
in
let m_P =
Mat.add m_P_a m_P_b
in
(* Fock matrix in AO basis *)
let fock_a =
match fock_a_prev, threshold > 100. *. threshold_SCF with
| Some fock_a_prev, true ->
let threshold = 1.e-8 in
Fock.make_uhf ~density_same:(Mat.sub m_P_a m_P_a_prev) ~density_other:(Mat.sub m_P_b m_P_b_prev) ~threshold ao_basis
|> Fock.add fock_a_prev
| _ -> Fock.make_uhf ~density_same:m_P_a ~density_other:m_P_b ao_basis
in
let fock_b =
match fock_b_prev, threshold > 100. *. threshold_SCF with
| Some fock_b_prev, true ->
let threshold = 1.e-8 in
Fock.make_uhf ~density_same:(Mat.sub m_P_b m_P_b_prev) ~density_other:(Mat.sub m_P_a m_P_a_prev) ~threshold ao_basis
|> Fock.add fock_b_prev
| _ -> Fock.make_uhf ~density_same:m_P_b ~density_other:m_P_a ao_basis
in
let m_F_a, m_Hc_a, m_J_a, m_K_a =
let x = fock_a in
Fock.(fock x, core x, coulomb x, exchange x)
in
let m_F_b, m_Hc_b, m_J_b, m_K_b =
let x = fock_b in
Fock.(fock x, core x, coulomb x, exchange x)
in
let m_F_mo_a =
xt_o_x ~o:m_F_a ~x:m_C
in
let m_F_mo_b =
xt_o_x ~o:m_F_b ~x:m_C
in
let m_F_mo =
let space k =
if k <= n_beta then
`Core
else if k <= n_alfa then
`Active
else
`Virtual
in
Array.init (Mat.dim2 m_F_mo_a) (fun i ->
let i = i+1 in
Array.init (Mat.dim1 m_F_mo_a) (fun j ->
let j = j+1 in
match (space i), (space j) with
| `Core , `Core ->
0.5 *. (m_F_mo_a.{i,j} +. m_F_mo_b.{i,j}) -.
(m_F_mo_b.{i,j} -. m_F_mo_a.{i,j})
| `Active , `Core
| `Core , `Active ->
(*
0.5 *. (m_F_mo_a.{i,j} +. m_F_mo_b.{i,j}) +.
0.5 *. (m_F_mo_b.{i,j} -. m_F_mo_a.{i,j})
*)
m_F_mo_b.{i,j}
| `Core , `Virtual
| `Virtual , `Core
| `Active , `Active ->
0.5 *. (m_F_mo_a.{i,j} +. m_F_mo_b.{i,j})
| `Virtual , `Active
| `Active , `Virtual ->
(*
0.5 *. (m_F_mo_a.{i,j} +. m_F_mo_b.{i,j}) -.
0.5 *. (m_F_mo_b.{i,j} -. m_F_mo_a.{i,j})
*)
m_F_mo_a.{i,j}
| `Virtual , `Virtual ->
0.5 *. (m_F_mo_a.{i,j} +. m_F_mo_b.{i,j}) +.
(m_F_mo_b.{i,j} -. m_F_mo_a.{i,j})
) )
|> Mat.of_array
in
let m_SC =
gemm m_S m_C
in
let m_F =
x_o_xt ~x:m_SC ~o:m_F_mo
in
(* Add level shift in AO basis *)
let m_F =
x_o_xt ~x:m_SC ~o:m_LSmo
|> Mat.add m_F
in
(* Fock matrix in orthogonal basis *)
let m_F_ortho =
xt_o_x m_F m_X
in
let error_fock =
let fps =
gemm m_F (gemm m_P m_S)
and spf =
gemm m_S (gemm m_P m_F)
in
xt_o_x (Mat.sub fps spf) m_X
in
let diis =
DIIS.append ~p:(Mat.as_vec m_F_ortho) ~e:(Mat.as_vec error_fock) diis
in
let m_F_diis =
let x =
Bigarray.genarray_of_array1 (DIIS.next diis)
in
Bigarray.reshape_2 x (Mat.dim1 m_F_ortho) (Mat.dim2 m_F_ortho)
in
(* MOs in orthogonal MO basis *)
let m_C', eigenvalues =
diagonalize_symm m_F_diis
in
(* MOs in AO basis *)
let m_C =
gemm m_X m_C'
in
(* Hartree-Fock energy *)
let energy =
nuclear_repulsion +. 0.5 *. ( Mat.gemm_trace m_P_a (Mat.add m_Hc_a m_F_a) +.
Mat.gemm_trace m_P_b (Mat.add m_Hc_b m_F_b) )
in
(* Convergence criterion *)
let error =
error_fock
|> Mat.as_vec
|> amax
|> abs_float
in
let converged =
nSCF = max_scf || error < threshold_SCF
in
let gap =
if nocc < Vec.dim eigenvalues then
eigenvalues.{nocc+1} -. eigenvalues.{nocc}
else 0.
in
let () =
match energy_prev with
| Some energy_prev ->
Printf.eprintf "%3d %16.10f %16.10f %11.4e %10.4f\n%!" nSCF energy (energy -. energy_prev) error gap
| None ->
Printf.eprintf "%3d %16.10f %16s %11.4e %10.4f\n%!" nSCF energy "" error gap
in
if not converged then
loop (nSCF+1) ( (energy, error, gap) :: iterations) (Some energy) m_C m_P_a m_P_b (Some fock_a) (Some fock_b) error diis
else
let iterations =
List.rev ( (energy, error, gap) :: iterations )
|> Array.of_list
in
HartreeFock_type.(ROHF
{
simulation;
nocc;
guess ;
eigenvectors = m_C ;
eigenvalues ;
energy ;
nuclear_repulsion;
iterations ;
kin_energy = Mat.gemm_trace m_P m_T;
eN_energy = Mat.gemm_trace m_P m_V;
coulomb_energy = 0.5 *. (Mat.gemm_trace m_P_a m_J_a) +.
0.5 *. (Mat.gemm_trace m_P_b m_J_b);
exchange_energy = 0.5 *. (Mat.gemm_trace m_P_a m_K_a) +.
0.5 *. (Mat.gemm_trace m_P_b m_K_b);
})
in
(* Guess coefficients *)
let m_H =
match guess with
| Guess.Hcore m_H -> m_H
| Guess.Huckel m_H -> m_H
in
let m_Hmo =
xt_o_x m_H m_X
in
let m_C', _ =
diagonalize_symm m_Hmo
in
let m_C =
gemm m_X m_C'
in
let diis = DIIS.make () in
loop 1 [] None m_C m_C m_C None None threshold_SCF diis

View File

@ -227,6 +227,10 @@ let xt_o_x ~o ~x =
gemm o x
|> gemm ~transa:`T x
let x_o_xt ~o ~x =
gemm o x ~transb:`T
|> gemm x
let canonical_ortho ?thresh:(thresh=1.e-6) ~overlap c =
let d, u, _ = gesvd (lacpy overlap) in

View File

@ -84,6 +84,9 @@ val diagonalize_symm : Lacaml.D.mat -> Lacaml.D.mat * Lacaml.D.vec
val xt_o_x : o:Lacaml.D.mat -> x:Lacaml.D.mat -> Lacaml.D.mat
(** Computes {% $\mathbf{X^\dag\, O\, X}$ %} *)
val x_o_xt : o:Lacaml.D.mat -> x:Lacaml.D.mat -> Lacaml.D.mat
(** Computes {% $\mathbf{X\, O\, X^\dag}$ %} *)
val canonical_ortho: ?thresh:float -> overlap:Lacaml.D.mat -> Lacaml.D.mat -> Lacaml.D.mat
(** Canonical orthogonalization. [overlap] is the overlap matrix {% $\mathbf{S}$ %},
and the last argument contains the vectors {% $\mathbf{C}$ %} to orthogonalize.

68
run_fci.ml Normal file
View File

@ -0,0 +1,68 @@
let () =
let open Command_line in
begin
set_header_doc (Sys.argv.(0) ^ " - QCaml command");
set_description_doc "Runs a Hartree-Fock calculation";
set_specs
[ { short='b' ; long="basis" ; opt=Mandatory;
arg=With_arg "<string>";
doc="Name of the file containing the basis set"; } ;
{ short='x' ; long="xyz" ; opt=Mandatory;
arg=With_arg "<string>";
doc="Name of the file containing the nuclear coordinates in xyz format"; } ;
{ short='m' ; long="multiplicity" ; opt=Optional;
arg=With_arg "<int>";
doc="Spin multiplicity (2S+1). Default is singlet"; } ;
{ short='c' ; long="charge" ; opt=Optional;
arg=With_arg "<int>";
doc="Total charge of the molecule. Default is 0"; } ;
]
end;
(* Handle options *)
let basis_file =
match Command_line.get "basis" with
| Some x -> x
| None -> assert false
in
let nuclei_file =
match Command_line.get "xyz" with
| Some x -> x
| None -> assert false
in
let charge =
match Command_line.get "charge" with
| Some x -> int_of_string x
| None -> 0
in
let multiplicity =
match Command_line.get "multiplicity" with
| Some x -> int_of_string x
| None -> 1
in
let s =
Simulation.of_filenames ~charge ~multiplicity ~nuclei:nuclei_file basis_file
in
let hf = HartreeFock.make s in
let mos =
MOBasis.of_hartree_fock hf
in
let space =
Determinant_space.fci_of_mo_basis ~frozen_core:false mos
in
let ci = CI.make space in
Format.printf "FCI energy : %20.16f@." ((CI.eigenvalues ci).{1} +. Simulation.nuclear_repulsion s);
(*
let s2 = Util.xt_o_x ~o:(CI.s2_matrix ci) ~x:(CI.eigenvectors ci) in
Util.list_range 1 (Determinant_space.size space)
|> List.iter (fun i -> Format.printf "@[%f@]@;" s2.{i,i});
*)