10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2025-01-14 06:45:50 +01:00

Cleaning in ERI

This commit is contained in:
Anthony Scemama 2018-03-27 16:31:44 +02:00
parent b5b3e1fc98
commit ab7abda328
3 changed files with 226 additions and 245 deletions

View File

@ -8,84 +8,13 @@ let max_ao = 1 lsl 14
type index_pair = { first : int ; second : int } type index_pair = { first : int ; second : int }
type t = type t = FourIdxStorage.t
| Dense of (float, float64_elt, fortran_layout) Bigarray.Genarray.t
| Sparse of (int, float) Hashtbl.t
let get_chem = FourIdxStorage.get_chem
let get_phys = FourIdxStorage.get_phys
let key_of_indices ~r1 ~r2 = let set_chem = FourIdxStorage.set_chem
let { first=i ; second=k } = r1 and { first=j ; second=l } = r2 in let set_phys = FourIdxStorage.set_phys
let i,k = if i<=k then i,k else k,i
and j,l = if j<=l then j,l else l,j in
let i,k,j,l = if k<=l then i,k,j,l else j,l,i,k in
((((((i lsl 15) lor k) lsl 15) lor j) lsl 15) lor l)
let get ~r1 ~r2 = function
| Dense t -> let { first=i ; second=k } = r1 and { first=j ; second=l } = r2 in t.{i,j,k,l}
| Sparse t -> let key = key_of_indices ~r1 ~r2 in
try Hashtbl.find t key
with Not_found -> 0.
let set ~r1 ~r2 ~value = function
| Dense t -> let { first=i ; second=k } = r1 and { first=j ; second=l } = r2 in
t.{i,j,k,l} <- value;
t.{k,j,i,l} <- value;
t.{i,l,k,j} <- value;
t.{k,l,i,j} <- value;
t.{j,i,l,k} <- value;
t.{j,k,l,i} <- value;
t.{l,i,j,k} <- value;
t.{l,k,j,i} <- value;
| Sparse t -> let key = key_of_indices ~r1 ~r2 in
Hashtbl.replace t key value
let increment ~r1 ~r2 ~value = function
| Dense t -> let { first=i ; second=k } = r1 and { first=j ; second=l } = r2 in
t.{i,j,k,l} <- t.{i,j,k,l} +. value;
t.{k,j,i,l} <- t.{k,j,i,l} +. value;
t.{i,l,k,j} <- t.{i,l,k,j} +. value;
t.{k,l,i,j} <- t.{k,l,i,j} +. value;
t.{j,i,l,k} <- t.{j,i,l,k} +. value;
t.{j,k,l,i} <- t.{j,k,l,i} +. value;
t.{l,i,j,k} <- t.{l,i,j,k} +. value;
t.{l,k,j,i} <- t.{l,k,j,i} +. value;
| Sparse t -> let key = key_of_indices ~r1 ~r2 in
let old_value =
try Hashtbl.find t key
with Not_found -> 0.
in
Hashtbl.replace t key (old_value +. value)
let create = function
| `Dense n ->
let eri_array =
Genarray.create Float64 fortran_layout [| n ; n ; n ; n|]
in
Genarray.fill eri_array 0.;
Dense eri_array
| `Sparse n ->
let eri_array = Hashtbl.create (n*n+13) in
Hashtbl.add eri_array (-1) (float_of_int n);
Sparse eri_array
let size = function
| Dense t -> Genarray.nth_dim t 3
| Sparse t -> Hashtbl.find t (-1) |> int_of_float
(** TODO : remove epsilons *)
let get_chem t i j k l = get ~r1:{ first=i ; second=j } ~r2:{ first=k ; second=l } t
let get_phys t i j k l = get ~r1:{ first=i ; second=k } ~r2:{ first=j ; second=l } t
let set_chem t i j k l value = set ~r1:{ first=i ; second=j } ~r2:{ first=k ; second=l } ~value t
let set_phys t i j k l value = set ~r1:{ first=i ; second=k } ~r2:{ first=j ; second=l } ~value t
module Am = AngularMomentum module Am = AngularMomentum
@ -95,7 +24,6 @@ module Bs = Basis
module Cs = ContractedShell module Cs = ContractedShell
module Csp = ContractedShellPair module Csp = ContractedShellPair
let cutoff = integrals_cutoff
(** (00|00)^m : Fundamental electron repulsion integral (** (00|00)^m : Fundamental electron repulsion integral
$ \int \int \phi_p(r1) 1/r_{12} \phi_q(r2) dr_1 dr_2 $ $ \int \int \phi_p(r1) 1/r_{12} \phi_q(r2) dr_1 dr_2 $
@ -125,49 +53,70 @@ let zero_m ~maxm ~expo_pq_inv ~norm_pq_sq =
result result
(** Compute all the integrals of a contracted class *)
let contracted_class_shell_pairs ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
TwoElectronRR.contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
let contracted_class_shell_pairs_vec ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
TwoElectronRRVectorized.contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
let contracted_class_atomic_shell_pairs ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
TwoElectronRR.contracted_class_atomic_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
(* let class_of_contracted_shell_pairs shell_p shell_q =
let contracted_class_atomic_shell_pairs_vec ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t = if Array.length (Csp.shell_pairs shell_p) + (Array.length (Csp.shell_pairs shell_q)) < 4 then
TwoElectronRRVectorized.contracted_class_atomic_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q TwoElectronRR.contracted_class_shell_pairs ~zero_m shell_p shell_q
*) else
TwoElectronRRVectorized.contracted_class_shell_pairs ~zero_m shell_p shell_q
let cutoff2 = cutoff *. cutoff
(*
type n_cls = { n : int ; cls : Zkey.t array }
*)
exception NullIntegral
(*
(** Unique index for integral <ij|kl> *)
let index i j k l = let filter_contracted_shell_pairs ?(cutoff=integrals_cutoff) shell_pairs =
let f i k = let t0 = Unix.gettimeofday () in
let (p,r) =
if i <= k then (i,k) else (k,i) let schwartz =
in p+ (r*r-r)/2 List.map (fun pair ->
let cls =
class_of_contracted_shell_pairs pair pair
in
(pair, Zmap.fold (fun key value accu -> max (abs_float value) accu) cls 0. )
) shell_pairs
|> List.filter (fun (_, schwartz_p_max) -> schwartz_p_max >= cutoff)
|> List.map fst
in in
let p = f i k and q = f j l in
f p q Printf.printf "%d shell pairs computed in %f seconds\n"
*) (List.length schwartz) (Unix.gettimeofday () -. t0);
schwartz
let store_class ?(cutoff=integrals_cutoff) data cls shell_p shell_q =
let to_powers x =
let open Zkey in
match to_powers x with
| Three x -> x
| _ -> assert false
in
Array.iteri (fun i_c powers_i ->
let i_c = Cs.index (Csp.shell_a shell_p) + i_c + 1 in
let xi = to_powers powers_i in
Array.iteri (fun j_c powers_j ->
let j_c = Cs.index (Csp.shell_b shell_p) + j_c + 1 in
let xj = to_powers powers_j in
Array.iteri (fun k_c powers_k ->
let k_c = Cs.index (Csp.shell_a shell_q) + k_c + 1 in
let xk = to_powers powers_k in
Array.iteri (fun l_c powers_l ->
let l_c = Cs.index (Csp.shell_b shell_q) + l_c + 1 in
let xl = to_powers powers_l in
let key = Zkey.of_powers_twelve xi xj xk xl in
let value = Zmap.find cls key in
set_chem data i_c j_c k_c l_c value;
) (Cs.zkey_array (Csp.shell_b shell_q))
) (Cs.zkey_array (Csp.shell_a shell_q))
) (Cs.zkey_array (Csp.shell_b shell_p))
) (Cs.zkey_array (Csp.shell_a shell_p))
let of_basis basis = let of_basis basis =
let to_powers x =
let open Zkey in
match to_powers x with
| Three x -> x
| _ -> assert false
in
let n = Bs.size basis let n = Bs.size basis
and shell = Bs.contracted_shells basis and shell = Bs.contracted_shells basis
@ -181,41 +130,18 @@ let of_basis basis =
let shell_pairs = let shell_pairs =
Csp.of_contracted_shell_array shell Csp.of_contracted_shell_array shell
in in
(*TODO
let atomic_shell_pairs =
Asp.of_atomic_shell_array ~cutoff atomic_shells
in
*)
(* Pre-compute diagonal integrals for Schwartz *) (* Pre-compute diagonal integrals for Schwartz *)
let t0 = Unix.gettimeofday () in
let schwartz = let schwartz =
List.map (fun pair -> filter_contracted_shell_pairs shell_pairs
let cls =
contracted_class_shell_pairs pair pair
(*TODO
contracted_class_atomic_shell_pairs pair pair
*)
in
(pair, cls, Zmap.fold (fun key value accu -> max (abs_float value) accu) cls 0. )
) shell_pairs
|> List.filter (fun (_, _, schwartz_p_max) -> schwartz_p_max >= cutoff)
in in
Printf.printf "%d shell pairs computed in %f seconds\n"
(List.length schwartz) (Unix.gettimeofday () -. t0);
(* Group shell pairs by common pairs of atoms *)
(* 4D data initialization *) (* 4D data initialization *)
let eri_array = let eri_array =
FourIdxStorage.create ~size:n `Dense
(* (*
create (`Dense n) FourIdxStorage.create ~size:n `Sparse
*) *)
create (`Sparse n)
in in
(* Compute ERIs *) (* Compute ERIs *)
@ -223,11 +149,8 @@ let of_basis basis =
let t0 = Unix.gettimeofday () in let t0 = Unix.gettimeofday () in
let inn = ref 0 and out = ref 0 in let inn = ref 0 and out = ref 0 in
(*TODO
for i=0 to (Array.length atomic_shells) - 1 do
*)
let ishell = ref 0 in let ishell = ref 0 in
List.iter (fun (shell_p, schwartz_p, schwartz_p_max) -> List.iter (fun shell_p ->
let () = let () =
if (Cs.index (Csp.shell_a shell_p) > !ishell) then if (Cs.index (Csp.shell_a shell_p) > !ishell) then
(ishell := Cs.index (Csp.shell_a shell_p) ; print_int !ishell ; print_newline ()) (ishell := Cs.index (Csp.shell_a shell_p) ; print_int !ishell ; print_newline ())
@ -235,85 +158,32 @@ let of_basis basis =
let sp = let sp =
Csp.shell_pairs shell_p Csp.shell_pairs shell_p
(*TODO
Asp.atomic_shell_pairs shell_p
*)
in in
try try
List.iter (fun (shell_q, schwartz_q, schwartz_q_max) -> List.iter (fun shell_q ->
let () = let () =
if Cs.index (Csp.shell_a shell_q) > if Cs.index (Csp.shell_a shell_q) >
Cs.index (Csp.shell_a shell_p) then Cs.index (Csp.shell_a shell_p) then
raise Exit raise Exit
in in
let sq =
Csp.shell_pairs shell_q
in
try let swap =
if schwartz_p_max *. schwartz_q_max < cutoff2 then Array.length sp > Array.length sq
raise NullIntegral; in
let sq = (* Compute all the integrals of the class *)
Csp.shell_pairs shell_q let f p q =
(*TODO let cls = class_of_contracted_shell_pairs p q in
Asp.atomic_shell_pairs shell_q store_class ~cutoff:integrals_cutoff eri_array cls p q
*) in
in if swap then
f shell_q shell_p
let swap = else
Array.length sp > Array.length sq f shell_p shell_q
in
(* Compute all the integrals of the class *)
let cls =
if swap then
(*TODO
contracted_class_atomic_shell_pairs ~schwartz_p:schwartz_q ~schwartz_q:schwartz_p shell_q shell_p
*)
if (Array.length sp) + (Array.length sq) < 4 then
contracted_class_shell_pairs ~schwartz_p:schwartz_q ~schwartz_q:schwartz_p shell_q shell_p
else
contracted_class_shell_pairs_vec ~schwartz_p:schwartz_q ~schwartz_q:schwartz_p shell_q shell_p
else
if (Array.length sp) + (Array.length sq) < 4 then
contracted_class_shell_pairs ~schwartz_p ~schwartz_q shell_p shell_q
else
contracted_class_shell_pairs_vec ~schwartz_p ~schwartz_q shell_p shell_q
in
(* Write the data in the output file *)
Array.iteri (fun i_c powers_i ->
let i_c = Cs.index (Csp.shell_a shell_p) + i_c + 1 in
let xi = to_powers powers_i in
Array.iteri (fun j_c powers_j ->
let j_c = Cs.index (Csp.shell_b shell_p) + j_c + 1 in
let xj = to_powers powers_j in
Array.iteri (fun k_c powers_k ->
let k_c = Cs.index (Csp.shell_a shell_q) + k_c + 1 in
let xk = to_powers powers_k in
Array.iteri (fun l_c powers_l ->
let l_c = Cs.index (Csp.shell_b shell_q) + l_c + 1 in
let xl = to_powers powers_l in
let key =
if swap then
Zkey.of_powers_twelve xk xl xi xj
else
Zkey.of_powers_twelve xi xj xk xl
in
let value =
Zmap.find cls key
in
set_chem eri_array i_c j_c k_c l_c value;
if (abs_float value > cutoff) then
(inn := !inn + 1;
)
else
out := !out + 1;
) (Cs.zkey_array (Csp.shell_b shell_q))
) (Cs.zkey_array (Csp.shell_a shell_q))
) (Cs.zkey_array (Csp.shell_b shell_p))
) (Cs.zkey_array (Csp.shell_a shell_p))
with NullIntegral -> ()
) schwartz ) schwartz
with Exit -> () with Exit -> ()
) schwartz; ) schwartz;
@ -323,19 +193,7 @@ let of_basis basis =
(** Write all integrals to a file with the <ij|kl> convention *) (** Write all integrals to a file with the <ij|kl> convention *)
let to_file ~filename eri_array = let to_file = FourIdxStorage.to_file
let oc = open_out filename in
(* Print ERIs *)
for l_c=1 to size eri_array do
for k_c=1 to l_c do
for j_c=1 to l_c do
for i_c=1 to k_c do
let value = get_phys eri_array i_c j_c k_c l_c in
if (abs_float value > cutoff) then
Printf.fprintf oc " %5d %5d %5d %5d%20.15f\n" i_c j_c k_c l_c value;
done;
done;
done;
done;
close_out oc

View File

@ -1,28 +1,28 @@
(** Electron repulsion intergals. *)
type t type t
(*
val filter_atomic_shell_pairs : ?cutoff:float -> AtomicShellPair.t list -> AtomicShellPair.t list
(** Uses Schwartz screening on atomic shell pairs. *)
*)
val filter_contracted_shell_pairs : ?cutoff:float -> ContractedShellPair.t list -> ContractedShellPair.t list
(** Uses Schwartz screening on contracted shell pairs. *)
val class_of_contracted_shell_pairs : ContractedShellPair.t -> ContractedShellPair.t -> float Zmap.t
(** Computes all the ERI of the class built from th combination of two contracted shell pairs. *)
val get_chem : t -> int -> int -> int -> int -> float val get_chem : t -> int -> int -> int -> int -> float
(** Get an integral using the Chemist's convention { \[ (ij|kl) \] }. *)
val get_phys : t -> int -> int -> int -> int -> float val get_phys : t -> int -> int -> int -> int -> float
(** Get an integral using the Physicist's convention { \[ \langle ij|kl \rangle \] }. *)
val zero_m : maxm:int -> expo_pq_inv:float -> norm_pq_sq:float -> float array
val contracted_class_shell_pairs :
?schwartz_p:float Zmap.t ->
?schwartz_q:float Zmap.t ->
ContractedShellPair.t ->
ContractedShellPair.t -> float Zmap.t
val contracted_class_shell_pairs_vec :
?schwartz_p:float Zmap.t ->
?schwartz_q:float Zmap.t ->
ContractedShellPair.t ->
ContractedShellPair.t -> float Zmap.t
val contracted_class_atomic_shell_pairs :
?schwartz_p:float Zmap.t ->
?schwartz_q:float Zmap.t ->
AtomicShellPair.t ->
AtomicShellPair.t -> float Zmap.t
val of_basis : Basis.t -> t val of_basis : Basis.t -> t
(** Compute all ERI's for a given {!Basis.t}. *)
val to_file : filename:string -> t -> unit val to_file : ?cutoff:float -> filename:string -> t -> unit
(** Write the ERI's to a file, using the Physicist's convention. *)

123
Utils/FourIdxStorage.ml Normal file
View File

@ -0,0 +1,123 @@
let max_index = 1 lsl 14
type index_pair = { first : int ; second : int }
type storage_t =
| Dense of (float, Bigarray.float64_elt, Bigarray.fortran_layout) Bigarray.Genarray.t
| Sparse of (int, float) Hashtbl.t
type t =
{
size : int ;
four_index : storage_t ;
}
let key_of_indices ~r1 ~r2 =
let { first=i ; second=k } = r1 and { first=j ; second=l } = r2 in
let f i k =
let p, r =
if i <= k then i, k else k, i
in p+ (r*r-r)/2
in
let p = f i k and q = f j l in
f p q
let get_four_index ~r1 ~r2 t =
match t.four_index with
| Dense t -> let { first=i ; second=k } = r1 and { first=j ; second=l } = r2 in t.{i,j,k,l}
| Sparse t -> let key = key_of_indices ~r1 ~r2 in
try Hashtbl.find t key
with Not_found -> 0.
let set_four_index ~r1 ~r2 ~value t =
match t.four_index with
| Dense t -> let { first=i ; second=k } = r1 and { first=j ; second=l } = r2 in
t.{i,j,k,l} <- value;
t.{k,j,i,l} <- value;
t.{i,l,k,j} <- value;
t.{k,l,i,j} <- value;
t.{j,i,l,k} <- value;
t.{j,k,l,i} <- value;
t.{l,i,j,k} <- value;
t.{l,k,j,i} <- value;
| Sparse t -> let key = key_of_indices ~r1 ~r2 in
Hashtbl.replace t key value
let increment_four_index ~r1 ~r2 ~value x =
match x.four_index with
| Dense t -> let { first=i ; second=k } = r1 and { first=j ; second=l } = r2 in
t.{i,j,k,l} <- t.{i,j,k,l} +. value;
t.{k,j,i,l} <- t.{k,j,i,l} +. value;
t.{i,l,k,j} <- t.{i,l,k,j} +. value;
t.{k,l,i,j} <- t.{k,l,i,j} +. value;
t.{j,i,l,k} <- t.{j,i,l,k} +. value;
t.{j,k,l,i} <- t.{j,k,l,i} +. value;
t.{l,i,j,k} <- t.{l,i,j,k} +. value;
t.{l,k,j,i} <- t.{l,k,j,i} +. value
| Sparse t -> let key = key_of_indices ~r1 ~r2 in
let old_value =
try Hashtbl.find t key
with Not_found -> 0.
in
Hashtbl.replace t key (old_value +. value)
let get ~r1 ~r2 =
get_four_index ~r1 ~r2
let set ~r1 ~r2 =
set_four_index ~r1 ~r2
let increment ~r1 ~r2 =
increment_four_index ~r1 ~r2
let create ~size sparsity =
assert (size < max_index);
let four_index =
match sparsity with
| `Dense ->
let result =
Bigarray.Genarray.create Float64 Bigarray.fortran_layout [| size ; size ; size ; size |]
in
Bigarray.Genarray.fill result 0.;
Dense result
| `Sparse ->
let result = Hashtbl.create (size*size+13) in
Sparse result
in
{ size ; four_index }
let size t = t.size
(** TODO : remove epsilons *)
let get_chem t i j k l = get ~r1:{ first=i ; second=j } ~r2:{ first=k ; second=l } t
let get_phys t i j k l = get ~r1:{ first=i ; second=k } ~r2:{ first=j ; second=l } t
let set_chem t i j k l value = set ~r1:{ first=i ; second=j } ~r2:{ first=k ; second=l } ~value t
let set_phys t i j k l value = set ~r1:{ first=i ; second=k } ~r2:{ first=j ; second=l } ~value t
(** Write all integrals to a file with the <ij|kl> convention *)
let to_file ?(cutoff=Constants.epsilon) ~filename data =
let oc = open_out filename in
for l_c=1 to size data do
for k_c=1 to l_c do
for j_c=1 to l_c do
for i_c=1 to k_c do
let value = get_phys data i_c j_c k_c l_c in
if (abs_float value > cutoff) then
Printf.fprintf oc " %5d %5d %5d %5d%20.15f\n" i_c j_c k_c l_c value;
done;
done;
done;
done;
close_out oc