10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-12-22 12:23:31 +01:00

Davidson with sparse matrix

This commit is contained in:
Anthony Scemama 2019-02-28 12:30:20 +01:00
parent c5a16d0765
commit a976bacfdf
4 changed files with 38 additions and 19 deletions

View File

@ -5,8 +5,8 @@ module Ds = Determinant_space
type t =
{
det_space : Ds.t ;
m_H : Mat.t lazy_t ;
m_S2 : Mat.t lazy_t ;
m_H : Matrix.t lazy_t ;
m_S2 : Matrix.t lazy_t ;
eigensystem : (Mat.t * Vec.t) lazy_t;
}
@ -53,18 +53,19 @@ let make det_space =
let ndet = Ds.size det_space in
let det = Ds.determinants det_space in
let mo_basis = Ds.mo_basis det_space in
(*
let m_H = lazy (
Util.list_range 0 (ndet-1)
|> List.map (fun i -> let ki = det.(i) in
Array.init ndet (fun j -> let kj = det.(j) in
Array.init ndet (fun i -> let ki = det.(i) in
Vec.init ndet (fun j -> let kj = det.(j-1) in
h_ij mo_basis ki kj
)
|> Vec.of_array)
|> Mat.of_col_vecs_list
|> Vector.sparse_of_vec
)
|> Matrix.sparse_of_vector_array
)
in
*)
(*
let m_H = lazy (
let ntasks = int_of_float @@ sqrt @@ float_of_int ndet in
@ -93,6 +94,8 @@ let make det_space =
|> Mat.of_col_vecs_list
) in
*)
(* Parallel
let m_H = lazy (
let h =
if Parallel.master then
@ -120,12 +123,15 @@ let make det_space =
List.iter (fun (i,j,x) -> h.{i+1,j+1} <- x) l);
Parallel.broadcast (lazy h)
) in
*)
let m_S2 = lazy (
Array.init ndet (fun i -> let ki = det.(i) in
Array.init ndet (fun j -> let kj = det.(j) in
Vec.init ndet (fun j -> let kj = det.(j-1) in
CIMatrixElement.make_s2 ki kj
))
|> Mat.of_array
)
|> Vector.sparse_of_vec
)
|> Matrix.sparse_of_vector_array
)
in
let eigensystem = lazy (
@ -134,9 +140,13 @@ let make det_space =
Parallel.broadcast @@
lazy (Util.diagonalize_symm m_H)
*)
let diagonal = Vec.init (Mat.dim1 m_H) (fun i -> m_H.{i,i}) in
let matrix_vector psi = symv m_H psi in
Davidson.make diagonal matrix_vector
let diagonal =
Vec.init (Matrix.dim1 m_H) (fun i -> Matrix.get m_H i i)
in
let matrix_prod psi =
Matrix.mm ~transa:`T m_H psi
in
Davidson.make diagonal matrix_prod
)
in
{ det_space ; m_H ; m_S2 ; eigensystem }

View File

@ -8,7 +8,7 @@ let make
?(n_iter=10)
?(threshold=1.e-8)
diagonal
matrix_vector
matrix_prod
=
let n = Vec.dim diagonal in (* Size of the matrix to diagonalize *)
@ -70,7 +70,12 @@ let make
(* Apply the operator the m last vectors *)
let w_new =
List.map matrix_vector u_new_ortho
matrix_prod (
u_new_ortho
|> Mat.of_col_vecs_list
|> Matrix.dense_of_mat )
|> Matrix.to_mat
|> Mat.to_col_vecs_list
in
(* Data for the next iteration *)

View File

@ -60,6 +60,10 @@ let dense_of_sparse = function
let dense_of_mat m = Dense m
let rec to_vector_array ?(threshold=epsilon) = function
| Sparse {m ; n ; v} -> v
| Dense m -> to_vector_array (sparse_of_dense ~threshold (Dense m))
let sparse_of_mat ?(threshold=epsilon) m =
dense_of_mat m

View File

@ -27,7 +27,7 @@ val get : t -> int -> int -> float
val to_mat : t -> Mat.t
(** Convert into a Lacaml Mat. *)
val to_vector_array : t -> Vector.t array
val to_vector_array : ?threshold:float -> t -> Vector.t array
(** Convert the matrix into an array of column vectors. *)
val sparse_of_dense : ?threshold:float -> t -> t