diff --git a/Basis/Multipole.ml b/Basis/Multipole.ml index cbc9d44..630e211 100644 --- a/Basis/Multipole.ml +++ b/Basis/Multipole.ml @@ -24,6 +24,15 @@ let matrix_z2 t = t.(5) let matrix_xy t = t.(6) let matrix_yz t = t.(7) let matrix_zx t = t.(8) +let matrix_x3 t = t.(9) +let matrix_y3 t = t.(10) +let matrix_z3 t = t.(11) +let matrix_x4 t = t.(12) +let matrix_y4 t = t.(13) +let matrix_z4 t = t.(14) + + + let cutoff = integrals_cutoff @@ -37,7 +46,7 @@ let to_powers x = let contracted_class shell_a shell_b : float Zmap.t array = match Csp.make shell_a shell_b with - | None -> Array.init 9 (fun _ -> Zmap.create 0) + | None -> Array.init 15 (fun _ -> Zmap.create 0) | Some shell_p -> begin @@ -45,7 +54,7 @@ let contracted_class shell_a shell_b : float Zmap.t array = let class_indices = Csp.zkey_array shell_p in let contracted_class = - Array.init 9 (fun _ -> Array.make (Array.length class_indices) 0.) + Array.init 15 (fun _ -> Array.make (Array.length class_indices) 0.) in let a_minus_b = @@ -97,10 +106,26 @@ let contracted_class shell_a shell_b : float Zmap.t array = Overlap_primitives.hvrr (Po.get xyz angMomA + 2, Po.get xyz angMomB) expo_inv (Co.get xyz a_minus_b, Co.get xyz center_pa) + + in + (* 1D *) + let j k = + let xyz = xyz_of_int k in + Overlap_primitives.hvrr (Po.get xyz angMomA + 3, Po.get xyz angMomB) + expo_inv + (Co.get xyz a_minus_b, Co.get xyz center_pa) + in + (* 1D *) + let l k = + let xyz = xyz_of_int k in + Overlap_primitives.hvrr (Po.get xyz angMomA + 4, Po.get xyz angMomB) + expo_inv + (Co.get xyz a_minus_b, Co.get xyz center_pa) + in let norm = norm_coef_scales.(i) in - let f0, f1, f2, g0, g1, g2, h0, h1, h2 = - f 0, f 1, f 2, g 0, g 1, g 2, h 0, h 1, h 2 + let f0, f1, f2, g0, g1, g2, h0, h1, h2, j0, j1, j2 , l0, l1, l2 = + f 0, f 1, f 2, g 0, g 1, g 2, h 0, h 1, h 2, j 0, j 1, j 2, l 0, l 1, l 2 in let x = g0 +. f0 *. xa in let y = g1 +. f1 *. ya in @@ -108,6 +133,13 @@ let contracted_class shell_a shell_b : float Zmap.t array = let x2 = h0 +. xa *. (2. *. x -. xa *. f0) in let y2 = h1 +. ya *. (2. *. y -. ya *. f1) in let z2 = h2 +. za *. (2. *. z -. za *. f2) in + let x3 = j0 +. xa *. f0 *. (3. *. x2 -. 3. *. x *. xa +. xa *. xa) in + let y3 = j1 +. ya *. f1 *. (3. *. y2 -. 3. *. y *. ya +. ya *. ya) in + let z3 = j2 +. za *. f2 *. (3. *. z2 -. 3. *. z *. za +. za *. za) in + let x4 = l0 +. xa *. f0 *. ( 4. *. x3 -. 6. *. x2 *. xa +. 4. *. x *. xa *. xa -. xa *. xa *. xa) in + let y4 = l1 +. ya *. f1 *. ( 4. *. y3 -. 6. *. y2 *. ya +. 4. *. y *. ya *. ya -. ya *. ya *. ya) in + let z4 = l2 +. za *. f2 *. ( 4. *. z3 -. 6. *. z2 *. za +. 4. *. z *. za *. za -. za *. za *. za) in + let c = contracted_class in let d = coef_prod *. norm in c.(0).(i) <- c.(0).(i) +. d *. x *. f1 *. f2; @@ -119,6 +151,13 @@ let contracted_class shell_a shell_b : float Zmap.t array = c.(6).(i) <- c.(6).(i) +. d *. x *. y *. f2; c.(7).(i) <- c.(7).(i) +. d *. f0 *. y *. z; c.(8).(i) <- c.(8).(i) +. d *. x *. f1 *. z; + c.(9).(i) <- c.(9).(i) +. d *. x3 *. f1 *. f2; + c.(10).(i) <- c.(10).(i) +. d *. f0 *. y3 *. f2; + c.(11).(i) <- c.(11).(i) +. d *. f0 *. f1 *. z3; + c.(12).(i) <- c.(12).(i) +. d *. x4 *. f1 *. f2; + c.(13).(i) <- c.(13).(i) +. d *. f0 *. y4 *. f2; + c.(14).(i) <- c.(14).(i) +. d *. f0 *. f1 *. z4; + ) class_indices end ) (Csp.coefs_and_shell_pairs shell_p); @@ -147,7 +186,7 @@ let of_basis basis = and shell = Bs.contracted_shells basis in - let result = Array.init 9 (fun _ -> Mat.create n n) in + let result = Array.init 15 (fun _ -> Mat.create n n) in for j=0 to (Array.length shell) - 1 do for i=0 to j do (* Compute all the integrals of the class *) @@ -155,7 +194,7 @@ let of_basis basis = contracted_class shell.(i) shell.(j) in - for k=0 to 8 do + for k=0 to 14 do Array.iteri (fun j_c powers_j -> let j_c = Cs.index shell.(j) + j_c + 1 in let xj = to_powers powers_j in @@ -176,7 +215,7 @@ let of_basis basis = done; done; done; - for k=0 to 8 do + for k=0 to 14 do Mat.detri result.(k); done; result diff --git a/Basis/Multipole.mli b/Basis/Multipole.mli index 64d09de..74346bd 100644 --- a/Basis/Multipole.mli +++ b/Basis/Multipole.mli @@ -31,4 +31,22 @@ val matrix_y2 : t -> Mat.t val matrix_z2 : t -> Mat.t (** {% $$ \langle \chi_i | z^2 | \chi_j \rangle $$ %} *) +val matrix_x3 : t -> Mat.t +(** {% $$ \langle \chi_i | x^3 | \chi_j \rangle $$ %} *) + +val matrix_y3 : t -> Mat.t +(** {% $$ \langle \chi_i | y^3 | \chi_j \rangle $$ %} *) + +val matrix_z3 : t -> Mat.t +(** {% $$ \langle \chi_i | z^3 | \chi_j \rangle $$ %} *) + +val matrix_x4 : t -> Mat.t +(** {% $$ \langle \chi_i | x^4 | \chi_j \rangle $$ %} *) + +val matrix_y4 : t -> Mat.t +(** {% $$ \langle \chi_i | y^4 | \chi_j \rangle $$ %} *) + +val matrix_z4 : t -> Mat.t +(** {% $$ \langle \chi_i | z^4 | \chi_j \rangle $$ %} *) + val of_basis : Basis.t -> t diff --git a/MOBasis/Localisation.ml b/MOBasis/Localisation.ml new file mode 100644 index 0000000..e7d1148 --- /dev/null +++ b/MOBasis/Localisation.ml @@ -0,0 +1,1376 @@ +(* Algorithme de localisation des orbitales *) + +(* SOMMAIRE *) + +(* 0. Paramètres du calcul *) + +(* I. Définition des types *) + +(* II : Définition des fonctions pour la localisation *) + + (* 1. Définitions de base nécessaire pour la suite *) + (* 2. Fonction de calcul de la matrice des angles selon la méthode de Edminston *) + (* 3. Fonction calcul de la matrice des angles selon la méthode de Boys façon Edminston = NON FONCTIONNELLE *) + (* 4. Fonction de calcul de la matrice des angles selon la méthode de Boys *) + (* 5. Pattern matching : calcul de alpha et du critere D *) + (* 6. Norme d'une matrice *) + (* 7. Détermination de alpha_max et ses indices i et j. + Si alpha max > pi/2 on soustrait pi/2 à la matrice des alphas de manière récursive + Si alpha max < pi/2 on ajoute pi/2 à la matrice des alphas de manière récursive *) + (* 8. Matrice de rotation 2 par 2 *) + (* 9. Matrice de rotation n par n avec un angle fixe *) + (* 10. Fonction d'extraction des 2 vecteurs propres i et j de la matrice des OMs pour les mettres dans la matrice Ksi (n par 2) + pour appliquer R afin d'effectuer la rotation des orbitales *) (* {1,2} -> 1ere ligne, 2e colonne *) + (* 11. Fonction de calcul de ksi~ (matrice n par 2), nouvelle matrice par application de la matrice de rotation dans laquelle + on obtient les deux orbitales que l'on va réinjecter dans la matrice Phi*) + (* 12. Fonction pour la création de matrice intermédiaire pour supprimer i j et ajouter i~ et j~ *) + (* 13. Matrice intérmédiaire où les orbitales i et j ont été supprimées et remplacées par des 0, par soustraction de la matrice Phi + par la matrice *) + +(* III. Localisation des OMs *) + + (* 1. Boucle de calcul de la nouvelle matrice des coefficient après n rotation d'orbitales *) + (* 2. Fonction de localisation *) + +(* IV : Fonctions pour la séparation et le rassemblement des matrices *) + + (* 1. Fonction de création d'une liste d'entier à partir d'un vecteur de float*) + (* 2. Fonction créant une liste à partir des éléments manquant d'une autre liste, dans l'intervalle [1 ; n_mo] *) + (* 3. Fonction de séparation d'une matrice en 2 sous matrice, la première matrice correspondant aux colonnes de la matrice dont le numéro est présent + dans la liste et la seconde à celles dont le numéro de colonne n'est pas présent dans la liste *) + (* 4. Liste des OMs occupées *) + (* 5. Liste des OMs de coeur *) + (* 6. Fonction de creation d'une liste des OMs pi virtuelles *) + (* 7. Fonction de rassemblement de 2 matrices *) + +(* V. Calcul *) + + (* 1. Séparation des OMs -> m_occ : OMs occupées; m_vir : OMs vacantes *) + (* 1.1 Liste des OMs pi virtuelles *) + (* 2. Application d'une légère rotation d'un angle fixé aux OMs pour améliorer la convergence *) + (* 3. Légende *) + (* 4. Rotation des orbitales : localise localisation new_X / "methode" / epsilon = 1. si <1 diminue l'angle des rotations / nb itération / critère de convergence *) + (* 4.1 Fonction de localisation de toutes les orbitales virtuelles sans separation *) + (* 4.2 Fonction de localisation en separant les orbitales pi et sigma *) + (* 4.3 Fonction de localisation en separant les orbitales pi et sigma et les 10 dernières sigma *) + (* 4.4 Fonction séparant les orbitales pi, la premiere et la seconde moitié des orbitales sigma *) + (* 5. Rassemblement des occupées et des virtuelles *) + (* 5.1 Rassemblement des orbitales occupées (coeur et non coeur) *) + (* 5.2 Pattern matching du type de separation des orbitales virtuelles et rassemblement des orbitales occupées et virtuelles *) + +(* VI. Analyse *) + + (* 1. Fonction de calcul de l'extension spatiale des orbitales *) + (* 2. Fonction de tri par ordre croissant d'une liste *) + (* 3. Fonction de tri par ordre croissant de l'extension spatiale des orbitales *) + (* 4. Moyenne/variance/ecart-type/mediane de l'extension spatiale des orbitales *) + (* 5. Fonction d'affichage *) + +let methode = "Boys_er";; (* Method for th orbitals localization *) +let iteration = 10000;; (* Maximum number of iteration for each localization *) +let cc = 10e-6;; (* Convergence criterion *) +let pre_angle = 0.001;; (* Rotation of the matrix with a small angle to improve the convergence *) +let epsilon = 1.;; (* Rotation angle = angle /. epsilon, default value : epsilon = 1. *) + +let x_end = 1;; (* Choice of the x_end for the pi/sigma/end separation, size of the second matrix with the sigma orbitals *) +(* !!! WARNING : even if you don't use this localization method, 0 < x_end < total number of sigma orbitals. + If you don't use this method, use the default value, x_end = 1 WARNING !!! *) + +(* Choice of the separation type of orbitals *) + +(* For valence ones *) +let type_separation_occu = "pi/sigma";; (* Separation of the pi and sigma orbitals *) +(*let type_separation_occu = "1/2";;*) (* Separation of the first and second half of the orbitals *) +(*let type_separation_occu = "pi/sigma/end";;*) (* Separation pi,(n-x_end) sigma and x_end sigma *) +(*let type_separation_occu = "pi/1/2";;*) (* Separation pi, (n/2) first sigma and (n/2) last sigma *) +(*let type_separation_occu = "full";;*) (* Without separation *) + +(* For occupied ones *) +let type_separation_vir = "pi/sigma";; (* Separation of the pi and sigma orbitals *) +(*let type_separation_vir = "1/2";;*) (* Separation of the first and second half of the orbitals *) +(*let type_separation_vir = "pi/sigma/end";;*) (* Separation pi,(n-x_end) sigma and x_end sigma *) +(*let type_separation_vir = "pi/1/2";;*) (* Separation pi, (n/2) first sigma and (n/2) last sigma *) +(*let type_separation_vir = "full";;*) (* Without separation *) + +open Lacaml.D + +(* I. Types definitions *) + +type alphaij = { + alpha_max : float; + indice_ii : int; + indice_jj : int; +} + +type alphad = { + m_alpha : Mat.t; + d : float; +} + +let localize mo_basis = + + let simulation = MOBasis.simulation mo_basis in + let nocc = + let elec = Simulation.electrons simulation + in + Electrons.n_alfa elec + in + let ao_basis = MOBasis.ao_basis mo_basis in + let n_core = + (Nuclei.small_core @@ Simulation.nuclei @@ MOBasis.simulation mo_basis) / 2 + in + let charge = Simulation.charge simulation + |>Charge.to_int + in + + (* II : Definition of the fonctions for the localization *) + + (* 1. Basic definitions *) + let m_C = MOBasis.mo_coef mo_basis in + let n_ao = Mat.dim1 m_C in + let pi = acos(-1.) in + + (* 2. Function for Edminston-Ruedenberg localization*) + (* Coefficient matrix n_ao x n_mo -> n_mo x n_mo matrix with angle(rad) between orbitals, Edminston localization criterion *) + (* matrix -> matrix, float *) + let f_alpha_er m_C = + + let ee_ints = AOBasis.ee_ints ao_basis in + let n_mo = Mat.dim2 m_C in + + let m_b12 = Mat.init_cols n_mo n_mo (fun i j -> 0.) in + let m_a12 = Mat.init_cols n_mo n_mo (fun i j -> 0.) in + let v_d = Vec.init n_mo (fun i -> 0.) in + + (* Tableaux temporaires *) + let m_pqr = + Bigarray.(Array3.create Float64 fortran_layout n_ao n_ao n_ao) + in + let m_qr_i = Mat.create (n_ao*n_ao) n_mo in + let m_ri_j = Mat.create (n_ao*n_mo) n_mo in + let m_ij_k = Mat.create (n_mo*n_mo) n_mo in + + Array.iter (fun s -> + (* Grosse boucle externe sur s *) + Array.iter (fun r -> + Array.iter (fun q -> + Array.iter (fun p -> + m_pqr.{p,q,r} <- ERI.get_phys ee_ints p q r s + ) (Util.array_range 1 n_ao) + ) (Util.array_range 1 n_ao) + ) (Util.array_range 1 n_ao); + + (* Conversion d'un tableau a 3 indices en une matrice nao x nao^2 *) + let m_p_qr = + Bigarray.reshape (Bigarray.genarray_of_array3 m_pqr) [| n_ao ; n_ao*n_ao |] + |> Bigarray.array2_of_genarray + in + + let m_qr_i = + (* (qr,i) = = \sum_p
C_{pi} *)
+ gemm ~transa:`T ~c:m_qr_i m_p_qr m_C
+ in
+
+ let m_q_ri =
+ (* Transformation de la matrice (qr,i) en (q,ri) *)
+ Bigarray.reshape_2 (Bigarray.genarray_of_array2 m_qr_i) n_ao (n_ao*n_mo)
+ in
+
+ let m_ri_j =
+ (* (ri,j) = = \sum_q C_{bj} *)
+ gemm ~transa:`T ~c:m_ri_j m_q_ri m_C
+ in
+
+ let m_r_ij =
+ (* Transformation de la matrice (ri,j) en (r,ij) *)
+ Bigarray.reshape_2 (Bigarray.genarray_of_array2 m_ri_j) n_ao (n_mo*n_mo)
+ in
+
+ let m_ij_k =
+ (* (ij,k) = = \sum_r C_{rk} *)
+ gemm ~transa:`T ~c:m_ij_k m_r_ij m_C
+ in
+
+ let m_ijk =
+ (* Transformation de la matrice (ei,j) en (e,ij) *)
+ Bigarray.reshape (Bigarray.genarray_of_array2 m_ij_k) [| n_mo ; n_mo ; n_mo |]
+ |> Bigarray.array3_of_genarray
+ in
+
+ Array.iter (fun j ->
+ Array.iter (fun i ->
+ m_b12.{i,j} <- m_b12.{i,j} +. m_C.{s,j} *. (m_ijk.{i,i,i} -. m_ijk.{j,i,j});
+ m_a12.{i,j} <- m_a12.{i,j} +. m_ijk.{i,i,j} *. m_C.{s,j} -.
+ 0.25 *. ( (m_ijk.{i,i,i} -. m_ijk.{j,i,j}) *. m_C.{s,i} +.
+ (m_ijk.{j,j,j} -. m_ijk.{i,j,i}) *. m_C.{s,j})
+ ) (Util.array_range 1 n_mo);
+ v_d.{j} <- v_d.{j} +. m_ijk.{j,j,j} *. m_C.{s,j}
+ ) (Util.array_range 1 n_mo)
+ ) (Util.array_range 1 n_ao);
+
+ (Mat.init_cols n_mo n_mo ( fun i j ->
+ if i= j
+ then 0.
+ else if asin( m_b12.{i,j} /. sqrt(m_b12.{i,j}**2. +. m_a12.{i,j}**2.)) > 0.
+ then 0.25 *. acos( -. m_a12.{i,j} /. sqrt(m_b12.{i,j}**2. +. m_a12.{i,j}**2.))
+ else -. 0.25 *. acos( -. m_a12.{i,j} /. sqrt(m_b12.{i,j}**2. +. m_a12.{i,j}**2.)))
+ ,Vec.sum v_d)
+
+ in
+
+ (* 3. Function for the Boys localization like the Edminston-Ruedenberg localization *)
+ (* Coefficient matrix n_ao x n_mo -> n_mo x n_mo matrix with angle between orbitals, localization Boys like ER criterion *)
+ (* Matrix -> matrix, float *)
+ let f_alpha_boys_er m_C =
+
+ let multipoles = AOBasis.multipole ao_basis in
+ let n_mo = Mat.dim2 m_C in
+ let phi_x_phi =
+ Multipole.matrix_x multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_y_phi =
+ Multipole.matrix_y multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_z_phi =
+ Multipole.matrix_z multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let m_b12=
+ let b12 g = Mat.init_cols n_mo n_mo ( fun i j ->
+ (g.{i,i} -. g.{j,j}) *. g.{i,j})
+ in
+ Mat.add (b12 phi_x_phi) ( Mat.add (b12 phi_y_phi) (b12 phi_z_phi))
+ in
+ let m_a12 =
+ let a12 g = Mat.init_cols n_mo n_mo ( fun i j ->
+ g.{i,j} *. g.{i,j} -. 0.25 *. ((g.{i,i} -. g.{j,j}) *. (g.{i,i} -. g.{j,j})))
+ in
+ Mat.add (a12 phi_x_phi) ( Mat.add (a12 phi_y_phi) (a12 phi_z_phi))
+
+ in
+ (Mat.init_cols n_mo n_mo ( fun i j ->
+ if i=j
+ then 0.
+ else if +. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j} >= 0.
+ then pi /. 4. -. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j}
+ else -. pi /. 4. -. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j})
+ ,0.5 *. Vec.sum(Vec.init n_mo ( fun i -> (phi_x_phi.{i,i})**2. +. (phi_y_phi.{i,i})**2. +. (phi_z_phi.{i,i})**2.)))
+ in
+(* 4. Function for the original Boys localization *)
+(* Coefficient matrix n_ao x n_mo -> (n_mo x n_mo matrix with angle between orbitals, localization criterion *)
+(* Matrix -> matrix, float *)
+ let f_theta_boys m_C =
+ let multipoles = AOBasis.multipole ao_basis in
+ let n_mo = Mat.dim2 m_C
+ in
+ let phi_x_phi =
+ Multipole.matrix_x multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_y_phi =
+ Multipole.matrix_y multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_z_phi =
+ Multipole.matrix_z multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_x2_phi =
+ Multipole.matrix_x2 multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_y2_phi =
+ Multipole.matrix_y2 multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_z2_phi =
+ Multipole.matrix_z2 multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let m_b_0 =
+ let b_0 g h = Mat.init_cols n_mo n_mo (fun i j ->
+ h.{i,i} +. h.{j,j} -. (g.{i,i}**2. +. g.{j,j}**2.))
+ in
+ Mat.add (b_0 phi_x_phi phi_x2_phi) (Mat.add (b_0 phi_y_phi phi_y2_phi) (b_0 phi_z_phi phi_z2_phi))
+ in
+ let m_beta =
+ let beta g = Mat.init_cols n_mo n_mo (fun i j ->
+ (g.{i,i} -. g.{j,j})**2. -. 4. *. g.{i,j}**2.)
+ in
+ Mat.add (beta phi_x_phi) (Mat.add (beta phi_y_phi) (beta phi_z_phi))
+ in
+ let m_gamma =
+ let gamma g = Mat.init_cols n_mo n_mo (fun i j ->
+ 4. *. g.{i,j} *. (g.{i,i} -. g.{j,j}) )
+ in
+ Mat.add (gamma phi_x_phi) (Mat.add (gamma phi_y_phi) (gamma phi_z_phi))
+ in
+ let m_theta = Mat.init_cols n_mo n_mo (fun i j ->
+ if i = j
+ then 0.
+ else +. 0.25 *. atan2 m_gamma.{i,j} m_beta.{i,j})
+ in
+ let m_critere_B = Mat.init_cols n_mo n_mo (fun i j ->
+ 0.5 *. (m_b_0.{i,j} +. 0.25 *. ((1. -. cos(4. *. m_theta.{i,j})) *. m_beta.{i,j} +. sin(4. *. m_theta.{i,j}) *. m_gamma.{i,j})))
+
+ in
+ m_theta, Vec.sum(Mat.as_vec m_critere_B)
+ in
+
+ (* Function to compute the new angle after rotation between the 2 orbitals j1 and j2, by the Boys like ER localization *)
+ (* n_mo x n_mo matrix with angle between orbitals, index of the orbital j1, index of the orbital j2 -> n_mo x 2 matrix with the new angles between j1 and j2, new localization criterion *)
+ (* matrix, integer, integer -> matrix, float *)
+ let f2_alpha_boys_er m_C j1 j2=
+ let multipoles = AOBasis.multipole ao_basis in
+ let n_mo = Mat.dim2 m_C
+ in
+ let phi_x_phi =
+ Multipole.matrix_x multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_y_phi =
+ Multipole.matrix_y multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_z_phi =
+ Multipole.matrix_z multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+
+ let m_b12=
+ let b12 g = Mat.init_cols n_mo 2 ( fun i j ->
+ if j = 1
+ then (g.{i,i} -. g.{j1,j1}) *. g.{i,j1}
+ else (g.{i,i} -. g.{j2,j2}) *. g.{i,j2})
+
+ in
+ Mat.add (b12 phi_x_phi) ( Mat.add (b12 phi_y_phi) (b12 phi_z_phi))
+ in
+ let m_a12 =
+ let a12 g = Mat.init_cols n_mo 2 ( fun i j ->
+ if j = 1
+ then g.{i,j1} *. g.{i,j1} -. 0.25 *. ((g.{i,i} -. g.{j1,j1}) *. (g.{i,i} -. g.{j1,j1}))
+ else g.{i,j2} *. g.{i,j2} -. 0.25 *. ((g.{i,i} -. g.{j2,j2}) *. (g.{i,i} -. g.{j2,j2})))
+ in
+ Mat.add (a12 phi_x_phi) ( Mat.add (a12 phi_y_phi) (a12 phi_z_phi))
+ in
+ (Mat.init_cols n_mo 2 ( fun i j ->
+ if i=j1 && j=1
+ then 0.
+ else if i = j2 && j=2
+ then 0.
+ else if +. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j} >= 0.
+ then pi /. 4. -. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j}
+ else -. pi /. 4. -. 0.25 *. atan2 m_b12.{i,j} m_a12.{i,j}),
+ Vec.sum(Vec.init n_mo ( fun i -> (phi_x_phi.{i,i})**2. +. (phi_y_phi.{i,i})**2. +. (phi_z_phi.{i,i})**2.)))
+ in
+
+ (* Function to compute the new angle after rotation between the 2 orbitals j1 and j2, by the Boys localization *)
+ (* n_mo x n_mo matrix with angles between orbitals, index of the orbital j1, index of the orbital j2 -> n_mo x 2 matrix with the new angles between j1 and j2, new localization criterion *)
+ (* matrix, integer, integer -> matrix, float *)
+ let f2_theta_boys m_C j1 j2 =
+ let multipoles = AOBasis.multipole ao_basis in
+ let n_mo = Mat.dim2 m_C
+ in
+ let phi_x_phi =
+ Multipole.matrix_x multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_y_phi =
+ Multipole.matrix_y multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_z_phi =
+ Multipole.matrix_z multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_x2_phi =
+ Multipole.matrix_x2 multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_y2_phi =
+ Multipole.matrix_y2 multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+ let phi_z2_phi =
+ Multipole.matrix_z2 multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:m_C
+ in
+
+ let m_beta =
+ let beta g = Mat.init_cols n_mo 2 (fun i j ->
+ if j = 1
+ then (g.{i,i} -. g.{j1,j1})**2. -. 4. *. g.{i,j1}**2.
+ else (g.{i,i} -. g.{j2,j2})**2. -. 4. *. g.{i,j2}**2.)
+ in Mat.add (beta phi_x_phi) (Mat.add (beta phi_y_phi) (beta phi_z_phi))
+ in
+
+ let m_gamma =
+ let gamma g = Mat.init_cols n_mo 2 (fun i j ->
+ if j = 1
+ then 4. *. g.{i,j1} *. (g.{i,i} -. g.{j1,j1})
+ else 4. *. g.{i,j2} *. (g.{i,i} -. g.{j2,j2}))
+ in Mat.add (gamma phi_x_phi) (Mat.add (gamma phi_y_phi) (gamma phi_z_phi))
+ in
+
+ let m_theta = Mat.init_cols n_mo 2 (fun i j ->
+ if i=j1 && j=1
+ then 0.
+ else if i = j2 && j=2
+ then 0.
+ else +. 0.25 *. atan2 m_gamma.{i,j} m_beta.{i,j})
+ in
+ let m_critere_B = Vec.init n_mo (fun i ->
+ phi_x2_phi.{i,i} -. phi_x_phi.{i,i}**2. +. phi_y2_phi.{i,i} -. phi_y_phi.{i,i}**2. +. phi_z2_phi.{i,i} -. phi_z_phi.{i,i}**2.)
+
+ in m_theta, Vec.sum( m_critere_B)
+ in
+
+ (* 5. Pattern matching : choice of the localization method *)
+ (* The method, coefficient matrix n_ao x n_mo -> n_mo x n_mo matrix with the angle between orbitals using previous function, localization criterion *)
+ (* string, matrix -> matrix, float *)
+
+ let m_alpha_d methode m_C =
+
+ let alpha methode =
+ match methode with
+ | "Boys_er"
+ | "BOYS_ER"
+ | "boys_er" -> let alpha_boys , d_boys = f_alpha_boys_er m_C in {m_alpha = alpha_boys; d = d_boys}
+ | "Boys"
+ | "boys"
+ | "BOYS" -> let theta_boys, b_boys = f_theta_boys m_C in {m_alpha = theta_boys; d = b_boys}
+ | "ER"
+ | "er" -> let alpha_er , d_er = f_alpha_er m_C in {m_alpha = alpha_er; d = d_er}
+ | _ -> invalid_arg "Unknown method, please enter Boys or ER"
+
+ in
+ alpha methode
+ in
+
+ (* 5. Pattern matching : choice of the localization method to compute the n_mo x 2 new angles and not the n_mo x n_mo angles, after the rotation of i and j orbitals *)
+ (* The method, coefficient matrix n_ao x n_mo, index of the orbital i , index of the orbital j -> n_mo x 2 matrix with the new angle between orbitals i and j using previous function, new localization criterion *)
+ (* string, matrix, integer, integer -> matrix, float *)
+ let f_speed_alpha methode m_C indice_i indice_j =
+ let alpha_speed methode =
+
+ match methode with
+ | "Boys_er"
+ | "boys_er" -> let m_alpha, critere_D = f2_alpha_boys_er m_C indice_i indice_j in {m_alpha = m_alpha; d = critere_D}
+ | "BOYS" -> let m_alpha, critere_D = f2_theta_boys m_C indice_i indice_j in {m_alpha = m_alpha; d = critere_D}
+ | _ -> invalid_arg "Unknown method, please enter Boys or ER"
+
+ in
+ alpha_speed methode
+
+ in
+ (* 6. Norm of a matrix *)
+ (* Matrix -> float *)
+ let norm m =
+
+ let vec_m = Mat.as_vec m in
+ let vec2 = Vec.sqr vec_m
+ in
+ sqrt(Vec.sum vec2)
+ in
+
+ (* 7. Calculation of the max angle[-pi/.4 , pi/.4] and its indexes i and j in the matrix *)
+ (* n_mo x n_mo matrix with angles between orbitals, coefficient matrix n_ao x n_mo, max number of iteration -> max angle, line location, column location *)
+ (* matrix, matrix, integer -> float, integer, integer *)
+ let rec new_m_alpha m_alpha m_C n_rec_alpha=
+
+ let n_mo = Mat.dim2 m_C in
+ let alpha_m =
+ if n_rec_alpha == 0
+ then m_alpha
+ else
+ Mat.init_cols n_mo n_mo (fun i j ->
+ if (m_alpha.{i,j}) >= (pi /. 2.)
+ then (m_alpha.{i,j} -. ( pi /. 2.))
+ else if m_alpha.{i,j} <= -. pi /. 2.
+ then (m_alpha.{i,j} +. ( pi /. 2.))
+ else m_alpha.{i,j} )
+ in
+
+ (* Location of the max angle in the matrix *)
+ (* angle matrix -> location of the max element *)
+ (* matrix -> integer *)
+ let max_element alpha_m =
+ Mat.as_vec alpha_m
+ |> iamax
+ in
+
+ (* Indexes i and j of the max angle *)
+ (* -> integer, integer *)
+ let indice_ii, indice_jj =
+ let max = max_element alpha_m
+ in
+ (max - 1) mod n_mo +1, (max - 1) / n_mo +1
+ in
+
+ (* Value of the max angle *)
+ (* angle matrix -> value of the max angle*)
+ (* matrix -> float *)
+ let alpha alpha_m =
+ let i = indice_ii in
+ let j = indice_jj
+ in
+ alpha_m.{i,j}
+ in
+ let alpha_max = alpha alpha_m
+
+ in
+ if alpha_max < pi /. 2.
+ then {alpha_max; indice_ii; indice_jj}
+ else new_m_alpha alpha_m m_C (n_rec_alpha-1)
+ in
+
+ (* 8. Rotation matrix 2x2 *)
+ (* angle -> 2x2 rotation matrix *)
+ (* float -> matrix *)
+ let f_R alpha =
+
+ Mat.init_cols 2 2 (fun i j ->
+ if i=j
+ then cos alpha
+ else if i>j
+ then sin alpha
+ else -. sin alpha )
+ in
+
+ (* 9. Rotation matrix nxn *)
+ (* Coefficient matrix n_ao x n_mo, angle -> new coefficient matrix n_ao x n_mo after a rotation with a small angle *)
+ (* matrix, float -> matrix *)
+ let rotate m_C angle=
+
+ let n_mo = Mat.dim2 m_C in
+
+ (* Antisymmetrization of the matrix and diagonal terms = 0, X *)
+ (* angle -> Antisymmetric matrix with this angle and diagonal terms = 0 *)
+ (* float -> matrix *)
+ let m_angle angle=
+
+ Mat.init_cols n_mo n_mo (fun i j ->
+ if i = j
+ then 0.
+ else if i>j
+ then -. angle
+ else angle)
+ in
+
+ let m = m_angle angle in
+
+ (* Square of the matrix X² *)
+ (* -> X . X *)
+ (* -> matrix*)
+ let mm = gemm m m in
+
+ (* Diagonalization of X² *)
+ (* diag = vector that contains the eigenvalues (-tau²), mm contains the eigenvectors (W) *)
+ (* -> vector *)
+ let diag = syev ~vectors:true mm in
+
+ (* -tau² to tau² *)
+ (* -> vector that contains the eigenvalues (tau²) *)
+ (* -> vector *)
+ let square_tau= Vec.abs diag in
+
+ (* tau² to tau *)
+ (* -> vector that contains the eigenvalues tau *)
+ (* -> vector *)
+ let tau = Vec.sqrt square_tau in
+
+ (* Calculation of cos tau from the vector tau *)
+ (* -> cos(tau) *)
+ (* -> integer *)
+ let cos_tau = Vec.cos tau in
+
+ (* Matrix cos tau *)
+ (* -> matrix with diagonal terms cos(tau) and 0 also *)
+ (* -> matrix *)
+ let m_cos_tau =
+
+ Mat.init_cols n_mo n_mo (fun i j ->
+ if i=j
+ then cos_tau.{i}
+ else 0.)
+ in
+
+ (* Calcul of sin(tau) from the vector tau *)
+ let sin_tau = Vec.sin tau in
+
+ (* Matrix sin tau *)
+ (* -> matrix with diagonal terms sin(tau) and 0 also *)
+ (* -> matrix *)
+ let m_sin_tau =
+
+ Mat.init_cols n_mo n_mo (fun i j ->
+ if i=j
+ then sin_tau.{i}
+ else 0.)
+ in
+
+ (* Calculation of the transposed matrix of W (X²) *)
+ (* -> transposed matrix of W *)
+ (* -> matrix *)
+ let transpose_mm = Mat.transpose_copy mm in
+
+ (* Calculation of the vector tau^-1 *)
+ (* -> vector tau^-1 *)
+ (* -> vector *)
+ let tau_1 =
+
+ Vec.init n_mo (fun i ->
+ if tau.{i}<= 0.001
+ then 1.
+ else 1. /. tau.{i})
+ in
+ (* Calculation of the matrix tau^⁻1 *)
+ (* -> matrix tau^-1 *)
+ (* -> matrix *)
+ let m_tau_1 =
+
+ Mat.init_cols n_mo n_mo (fun i j ->
+ if i=j
+ then tau_1.{i}
+ else 0.)
+ in
+
+ (* gemm mm (gemm m_cos_tau transpose_mm) -> W cos(tau) Wt *)
+ (* -> matrix *)
+ let a = gemm mm (gemm m_cos_tau transpose_mm) in
+
+ (* gemm mm (gemm m_tau_1 ( gemm m_sin_tau (gemm transpose_mm m))) -> W tau^-1 sin(tau) Wt X *)
+ (* -> matrix *)
+ let b = gemm mm (gemm m_tau_1 ( gemm m_sin_tau (gemm transpose_mm m))) in
+
+ (* Sum of a + b -> Rotation matrix *)
+ (* -> Rotation matrix *)
+ (* -> matrix *)
+ let m_r = Mat.add a b
+ in
+ gemm m_C m_r
+ in
+
+ (* Function to extract 2 vectors i and j in a matrix *)
+ (* Coefficient matrix n_ao x n_mo, index of the orbital i, index of the orbital j -> n_mo x 2 matrix with the eigenvetors i and j*)
+ (* matrix, integer, integer -> matrix *)
+ let f_Ksi indice_i indice_j m_C =
+ let n_ao = Mat.dim1 m_C
+
+ in
+ Mat.init_cols n_ao 2 (fun i j ->
+ if j=1
+ then m_C.{i,indice_i}
+ else m_C.{i,indice_j} )
+ in
+
+ (* Function to apply a rotation with a 2x2 rotation matrix on a n_mo x 2 matrix that contains i and j *)
+ (* 2x2 rotation matrix, n_mo x 2 eigenvetors(i and j) matrix -> n_mo x 2 new eigenvetors(i~ and j~) after rotation *)
+ (* matrix, matrix -> matrix *)
+ let f_Ksi_tilde m_R m_Ksi = gemm m_Ksi m_R
+ in
+
+ (* Function to create intermediate coefficient matrix in order to delete the i j orbitals and add i~ j~ in the coefficient matrix *)
+ (* n_mo x 2 matrix with k and l orbitals, index of k, index of l, n_ao x n_mo matrix coefficient -> matrix where all terms are equal to 0 except the k and l columns that contain the eigenvetors k and l *)
+ (* matrix, integer, integer, matrix -> matrix *)
+ let f_k mat indice_i indice_j m_C =
+ let n_mo = Mat.dim2 m_C in
+ let n_ao = Mat.dim1 m_C
+
+ in
+ Mat.init_cols n_ao n_mo (fun i j ->
+ if j=indice_i
+ then mat.{i,1}
+ else if j=indice_j
+ then mat.{i,2}
+ else 0.)
+ in
+
+ (* Function to create a intermediate angle matrix in order to delete all the previous angle between i and all the other orbitals, j and all the other orbitals.
+ And add the new angles between these orbitals *)
+ (* n_mo x 2 matrix with angles between k and all the other orbitals l and all the other orbitals, index of k, index of l, coefficent matrix n_ao x n_mo -> matrix where all terms are equal to 0 except the k and l lines and columns that contains the angles between the orbitals *)
+ (* matrix, integer, integer, matrix -> matrix *)
+ let f_k_angle mat indice_i indice_j m_C =
+ let n_mo = Mat.dim2 m_C
+
+ in
+ Mat.init_cols n_mo n_mo (fun i j ->
+ if j=indice_i
+ then mat.{i,1}
+ else if j=indice_j
+ then mat.{i,2}
+ else if i = indice_i
+ then -. mat.{j,1}
+ else if i = indice_j
+ then -. mat.{j,2}
+ else 0.)
+ in
+
+ (* Intermediate matrix where the i and j orbitals are equal to 0 *)
+ (* Coefficient matrix n_ao x n_mo, matrix where terms are equal to 0 except the k and l columns that contain the eigenvetors k and l *)
+ (* matrix, matrix -> matrix *)
+ let f_interm m_C mat =
+
+ Mat.sub m_C mat
+ in
+
+ (* Function to compute the new coefficient matrix after a rotation between 2 orbitals *)
+ (* coefficient matrix n_ao x n_mo, angle matrix, parameter -> new coefficient matrix n_ao x n_mo *)
+ let new_m_C m_C m_alpha epsilon =
+
+ (* alphaij contains the max angle of the angle matrix and the indexes *)
+ let n_rec_alpha = 10 in
+ let alphaij = new_m_alpha m_alpha m_C n_rec_alpha in
+
+ (* Value of the angle *)
+ let alpha = (alphaij.alpha_max) *. epsilon in
+
+ (* Localtion of the max angle *)
+ let indice_i = alphaij.indice_ii in
+ let indice_j = alphaij.indice_jj in
+
+ (* Rotation matrix *)
+ let m_R = f_R alpha in
+
+ (* Matrix with i and j orbitals *)
+ let m_Ksi = f_Ksi indice_i indice_j m_C in
+
+ (* Matrix with the new i~ and j~ orbitals *)
+ let m_Ksi_tilde = f_Ksi_tilde m_R m_Ksi in
+
+ (* Matrix to delete the i and j orbitals in the coefficient matrix *)
+ let m_Psi = f_k m_Ksi indice_i indice_j m_C in
+
+ (* Matrix to add the i~ and j~ orbitals in the coefficient matrix *)
+ let m_Psi_tilde = f_k m_Ksi_tilde indice_i indice_j m_C in
+
+ (* Coefficient matrix without the i and j orbitals *)
+ let m_interm = f_interm m_C m_Psi
+
+ in
+ (* Matrice after rotation, max angle, index i, index j *)
+ (Mat.add m_Psi_tilde m_interm, alpha, indice_i, indice_j)
+ in
+
+ (* Function to compute the new angle matrix after one rotation between 2 orbitals *)
+ (* Previous angle matrix n_mo x n_mo, new coefficient matrix n_ao x n_mo, previous angle matrix, index of the orbital i, index of the orbital j -> new angle matrix, new localization criterion *)
+ (* matrix, matrix, matrix, integer, integer -> matrix, float *)
+ let m_alpha m_new_m_C prev_m_alpha indice_i indice_j =
+
+ (* n_mo x 2 matrix that contains the new angles between i,j with the other orbitals *)
+ let speed_alphad = f_speed_alpha methode m_new_m_C indice_i indice_j in
+
+ (* New localization criterion *)
+ let critere_D = speed_alphad.d in
+
+ (* Previous angles *)
+ let ksi_angle = f_Ksi indice_i indice_j prev_m_alpha in
+
+ (* New angles *)
+ let ksi_angle_tilde = speed_alphad.m_alpha in
+
+ (* Matrix to delete the previous angles *)
+ let psi_angle = f_k_angle ksi_angle indice_i indice_j m_new_m_C in
+
+ (* Matrix to add the new angles *)
+ let psi_tilde_angle = f_k_angle ksi_angle_tilde indice_i indice_j m_new_m_C in
+
+ (* Matrix without the angles between i, j and the orbitals *)
+ let m_interm = f_interm prev_m_alpha psi_angle
+
+ in
+ (* New angle matrix, new localization criterion *)
+ (Mat.add m_interm psi_tilde_angle, critere_D)
+ in
+
+
+
+(* III. Localization *)
+
+ (* Loop to compute the new coefficient matrix avec n orbital rotations *)
+ (* Coefficeient matrix n_ao x n_mo, localization method, parameter, max number of iteration, previous localization criterion, previous angle matrix, convergence criterion -> new coefficient matrix after n orbital rotations *)
+ (* matrix, string, float, integer, float, matrix, float -> matrix *)
+ let rec localisation m_C methode epsilon n prev_critere_D prev_m_alpha cc =
+
+ if n == 0
+ then m_C
+ else
+
+ (* New coefficient matrix after one rotation *)
+ let m_new_m_C, alpha_max, indice_i, indice_j = new_m_C m_C prev_m_alpha epsilon in
+
+ (* New angle matrix after one rotation *)
+ let m_alpha, critere_D = m_alpha m_new_m_C prev_m_alpha indice_i indice_j in
+
+ (* Matrix norm, angle average *)
+
+ let norm_alpha = norm m_alpha in
+ let moyenne_alpha = norm_alpha /. (float_of_int((Mat.dim1 m_C)* (Mat.dim2 m_C))) in
+ let alpha = alpha_max /. epsilon in
+
+ Printf.printf "%i %f %f %f %f\n%!" (iteration-n) critere_D alpha norm_alpha moyenne_alpha;
+
+ (* Convergence criterion *)
+ if alpha_max**2. < cc**2.
+ then m_new_m_C
+ else localisation m_new_m_C methode epsilon (n-1) critere_D m_alpha cc
+ in
+
+ (* 2. Localization function *)
+ let localise localisation m_C methode epsilon n cc =
+
+ let alphad = m_alpha_d methode m_C in
+ let prev_m_alpha = alphad.m_alpha in
+ let prev_critere_D = 0.
+ in
+ localisation m_C methode epsilon n prev_critere_D prev_m_alpha cc
+ in
+
+(* IV : Functions to split and assemble matrix *)
+
+ (* Function to create a integer list from a vector of float *)
+ (* float vector -> integer list *)
+ let int_list vec =
+
+ let float_list = Vec.to_list vec in
+ let g a = int_of_float(a)
+ in
+ List.map g float_list
+ in
+
+ (* Function to create a list from the missing elements of an other list*)
+ (* Coefficient matrix n_ao x n_mo, list -> list of missing element of the previous list *)
+ (* matrix, integer list -> integer list *)
+ let miss_elem mat list =
+
+ let n_mo = Mat.dim2 mat in
+ let vec = Vec.init (n_mo) (fun i ->
+ if List.mem i list
+ then 0.
+ else float_of_int(i))
+ in
+ let list_int = int_list vec
+ in
+ List.filter (fun x -> x > 0) list_int
+ in
+
+ (* Function to split a matrix in 2 matrix, the first matrix corresponds to the column number whose number is in the list, the second matrix corresponds to the column which are not in the list *)
+ (* Coefficient matrix n_ao x n_mo, list -> matrix, matrix *)
+ (* matrix, integer list -> matrix, matrix*)
+ let split_mat mat list =
+
+ let vec_of_mat = Mat.to_col_vecs mat in
+ let f a = vec_of_mat.(a-1) in
+ let vec_list_1 = List.map f list in
+ let list_2 = miss_elem mat list in
+ let vec_list_2 = List.map f list_2
+ in
+ (Mat.of_col_vecs_list vec_list_1,Mat.of_col_vecs_list vec_list_2)
+ in
+
+
+ (* Function to create a matrix from a list*)
+ (* Coefficient matrix n_ao x n_mo, list of orbitals -> matrix with these orbitals *)
+ (* matrix, integer list -> matrix*)
+ let create_mat mat list =
+
+ let vec_of_mat = Mat.to_col_vecs mat in
+ let f a = vec_of_mat.(a-1) in
+ let vec_list = List.map f list
+ in
+ Mat.of_col_vecs_list vec_list
+ in
+
+ (* List of the occupied MOs *)
+ let list_occ =
+
+ let vec_occ = Vec.init (nocc) (fun i -> float_of_int(i))
+ in
+ int_list vec_occ
+ in
+
+ (* List of the core MOs *)
+ let list_core =
+ let vec_core = Vec.init (n_core) (fun i -> float_of_int(i))
+ in int_list vec_core
+ in
+
+ (* Function to create a list of pi MOs *)
+ (* Coefficient matrix n_ao x n_mo -> list of pi orbitals *)
+ (* matrix -> integer list *)
+ let list_pi mat =
+ let n_mo = Mat.dim2 mat in
+ let m_pi = Mat.init_cols n_ao (n_mo+1) ( fun i j ->
+ if j=1 && m_C.{i,j}**2. < 10e-8**2.
+ then 0.
+ else if j=1
+ then m_C.{i,j}
+ else if mat.{i,j-1}**2. < 10e-8**2.
+ then 0.
+ else mat.{i,j-1})
+ in
+ let vec = Mat.to_col_vecs m_pi in
+ let vec_dot = Vec.init ((Mat.dim2 mat)) (fun i -> dot vec.(0) vec.(i)) in
+ let vec_pi = Vec.init ((Mat.dim2 mat)) (fun i ->
+ if vec_dot.{i} = 0.
+ then float_of_int(i)
+ else 0.)
+ in
+ let list_pi = int_list vec_pi in
+ let rec remove x list =
+ match list with
+ | [] -> []
+ | var :: tail -> if var = x
+ then remove x tail
+ else var :: (remove x tail)
+ in
+ remove 0 list_pi
+ in
+
+ (* Function to create a list of the (n-x_end) first MOs of a matrix *)
+ (* Coefficient matrix n_ao x n_mo -> list of the (n-x_end) first MOs of the matrix *)
+ (* matrix -> integer list *)
+ let list_x_end mat =
+ let n = Mat.dim2 mat in
+ let vec_x_end = Vec.init (n-x_end) (fun i -> float_of_int(i))
+ in
+ int_list vec_x_end
+ in
+
+ (* Function to create a list of the (n/2) first MOs of a matrix *)
+ (* Coefficient matrix n_ao x n_mo -> list of the (n/2) first MOs of the matrix *)
+ (* matrix -> integer list *)
+ let list_s_12 mat =
+ let n = Mat.dim2 mat in
+ let vec_12 = Vec.init (n/2) (fun i -> float_of_int(i))
+ in
+ int_list vec_12
+ in
+
+ (* Function to assemble to matrix with the same number of line *)
+ (* Coefficient matrix n_ao x n, coefficient matrix n_ao x m -> Coefficient matrix n_ao x (n+m) *)
+ (* matrix, matrix -> matrix*)
+ let assemble mat_1 mat_2 =
+
+ let v_mat_1 = Mat.to_col_vecs mat_1 in
+ let v_mat_2 = Mat.to_col_vecs mat_2 in
+ let m = Array.append v_mat_1 v_mat_2
+ in
+ Mat.of_col_vecs m
+ in
+
+(* V. Calculation *)
+
+ (* 1. Caption *)
+ let text = "Method : " ^ methode ^ "; Separation type of the valence occupied MOs : " ^ type_separation_occu ^ "; Separation type of the virtual MOs : " ^ type_separation_vir ^ "; Max number of iteration : " ^ string_of_int(iteration) ^ "; cc : " ^ string_of_float(cc)^"; epsilon : "^string_of_float(epsilon)^"; charge : "^string_of_int(charge)^"; Rotation pre angle : "^string_of_float(pre_angle)
+ in
+ let caption = "n Criterion max_angle norm_angle average_angle"
+ in
+ Printf.printf "%s\n" "";
+ Printf.printf "%s\n" "Orbitals localization ";
+ Printf.printf "%s\n" "";
+ Printf.printf "%s\n" text;
+ Printf.printf "%s\n" "";
+ Printf.printf "%s\n" caption;
+ Printf.printf "%s\n" "";
+
+ (* Separation of the occupied and virtual MOs, valence and core MOs *)
+ let m_occ , m_vir = split_mat m_C list_occ in
+
+ let m_core, m_occu = split_mat m_occ list_core in
+
+ (* Localization function *)
+ (* Coefficient matrix n_ao x n_mo -> localized coefficient matrix n_ao x n_mo *)
+ (* matrix -> matrix *)
+ let f_localise mat =
+
+ if Mat.dim2 mat = 0
+ then Printf.printf "%s\n" "0 orbital, no localization";
+
+ let new_mat =
+ if Mat.dim2 mat = 0
+ then mat
+ else rotate mat pre_angle
+ in
+ if Mat.dim2 mat = 0
+ then new_mat
+ else localise localisation new_mat methode epsilon iteration cc
+ in
+
+ (* Core MOs localization *)
+ let loc_m_core =
+ Printf.printf "%s\n" "I/III";
+ Printf.printf "%s\n" "Localization of core orbitals";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 m_core);
+ Printf.printf "%s\n" "";
+
+ f_localise m_core in
+
+ Printf.printf "%s\n" "";
+ Printf.printf "%s\n" "End I/III";
+ Printf.printf "%s\n" "";
+
+ (* Localization function without separation *)
+ let f_loc_assemble_1 mat =
+
+ Printf.printf "%s\n" "";
+ Printf.printf "%s\n" "Localization 1/1";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat);
+
+ f_localise mat in
+
+ Printf.printf "%s\n" "";
+
+ (* Localization function with 1 MOs separation *)
+ let f_loc_assemble_12 mat list_12 =
+
+ if List.length(list_12 mat) + List.length(miss_elem mat (list_12 mat)) <> (Mat.dim2 mat)
+ then Printf.printf "%s\n" "Bug : List length problem (list_12 or miss_elem list_12)";
+
+ let mat_1, mat_2 = split_mat mat (list_12 mat) in
+
+ Printf.printf "%s\n" "";
+ Printf.printf "%s\n" "Localization 1/2";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1);
+ let m_loc_1 = f_localise mat_1 in
+ Printf.printf "%s\n" "";
+
+ Printf.printf "%s\n" "Localization 2/2";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2);
+ let m_loc_2 = f_localise mat_2 in
+ Printf.printf "%s\n" "";
+
+ assemble m_loc_1 m_loc_2
+ in
+
+ (* Localization function with 2 MOs separations *)
+ let f_loc_assemble_123 mat list_12 list_2ab =
+
+ if List.length(list_12 mat) + List.length(miss_elem mat (list_12 mat)) <> (Mat.dim2 mat)
+ then Printf.printf "%s\n" "Bug : List length problem (list_12 or miss_elem list_12)";
+
+ let mat_1, mat_2 = split_mat mat (list_12 mat) in
+
+ if List.length(list_2ab mat_2) + List.length(miss_elem mat_2 (list_2ab mat_2)) <> (Mat.dim2 mat_2)
+ then Printf.printf "%s\n" "Bug : List length problem (list_2ab or miss_elem list_2ab)";
+
+ let mat_2a, mat_2b = split_mat mat_2 (list_2ab mat_2) in
+
+ Printf.printf "%s\n" "";
+ Printf.printf "%s\n" "Localization 1/3";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1);
+ let m_loc_1 = f_localise mat_1 in
+ Printf.printf "%s\n" "";
+
+ Printf.printf "%s\n" "Localization 2/3";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2a);
+ let m_loc_2a = f_localise mat_2a in
+ Printf.printf "%s\n" "";
+
+ Printf.printf "%s\n" "Localization 3/3";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2b);
+ let m_loc_2b = f_localise mat_2b in
+ Printf.printf "%s\n" "";
+
+ let m_loc_2ab = assemble m_loc_2a m_loc_2b
+ in
+
+ assemble m_loc_1 m_loc_2ab
+ in
+
+ (* Localization function with 3 MOs separations *)
+ let f_loc_assemble_1234 mat list_12 list_1ab list_2ab =
+
+ if List.length(list_12 mat) + List.length(miss_elem mat (list_12 mat)) <> (Mat.dim2 mat)
+ then Printf.printf "%s\n" "Bug : List length problem (list_12 or miss_elem list_12)";
+
+ let mat_1, mat_2 = split_mat mat (list_12 mat) in
+
+ if List.length(list_1ab mat_1) + List.length(miss_elem mat (list_1ab mat_1)) <> (Mat.dim2 mat_1)
+ then Printf.printf "%s\n" "Bug : List length problem (list_1ab or miss_elem list_1ab)";
+
+ let mat_1a, mat_1b = split_mat mat_1 (list_1ab mat_1) in
+
+ if List.length(list_2ab mat_2) + List.length(miss_elem mat (list_2ab mat_1)) <> (Mat.dim2 mat_2)
+ then Printf.printf "%s\n" "Bug : List length problem (list_2ab or miss_elem list_2ab)";
+
+ let mat_2a, mat_2b = split_mat mat_2 (list_2ab mat_2) in
+
+ Printf.printf "%s\n" "";
+ Printf.printf "%s\n" "Localization 1/4";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1a);
+ let m_loc_1a = f_localise mat_1a in
+ Printf.printf "%s\n" "";
+
+ Printf.printf "%s\n" "Localization 2/4";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1b);
+ let m_loc_1b = f_localise mat_1b in
+ Printf.printf "%s\n" "";
+
+ Printf.printf "%s\n" "Localization 3/4";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2a);
+ let m_loc_2a = f_localise mat_2a in
+ Printf.printf "%s\n" "";
+
+ Printf.printf "%s\n" "Localization 4/4";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2b);
+ let m_loc_2b = f_localise mat_2b in
+ Printf.printf "%s\n" "";
+
+ let m_loc_1ab = assemble m_loc_1a m_loc_1b in
+ let m_loc_2ab = assemble m_loc_2a m_loc_2b
+ in
+ assemble m_loc_1ab m_loc_2ab
+ in
+
+ (* Localization function with 4 separations "by hands" *)
+ let f_loc_assemble_main mat list_1 list_2 list_3 list_4 =
+
+ if (List.length(list_1) + List.length(list_2) + List.length(list_3) + List.length(list_4)) <> (Mat.dim2 mat)
+ then Printf.printf "%s\n" "Bug : List length problem";
+
+ let mat_1 = create_mat mat list_1 in
+ let mat_2 = create_mat mat list_2 in
+ let mat_3 = create_mat mat list_3 in
+ let mat_4 = create_mat mat list_4 in
+
+ Printf.printf "%s\n" "";
+ Printf.printf "%s\n" "Localization 1/4";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_1);
+ let loc_mat_1 = f_localise mat_1 in
+ Printf.printf "%s\n" "";
+
+ Printf.printf "%s\n" "Localization 2/4";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_2);
+ let loc_mat_2 = f_localise mat_2 in
+ Printf.printf "%s\n" "";
+
+ Printf.printf "%s\n" "Localization 3/4";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_3);
+ let loc_mat_3 = f_localise mat_3 in
+ Printf.printf "%s\n" "";
+
+ Printf.printf "%s\n" "Localization 4/4";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 mat_4);
+ let loc_mat_4 = f_localise mat_4
+
+ in
+ Printf.printf "%s\n" "";
+ assemble (assemble loc_mat_1 loc_mat_2) (assemble loc_mat_3 loc_mat_4)
+ in
+
+ (* Pattern matching for the separation type of the occupied MOs *)
+ let m_assemble_occ, m_assemble_occu =
+
+ let m_assemble_occu =
+ Printf.printf "%s\n" "II/III";
+ Printf.printf "%s\n" "Localization of valence orbitals";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 m_occu);
+ match type_separation_occu with
+ | "full" -> let m_assemble_occu = f_loc_assemble_1 m_occu in m_assemble_occu
+ | "pi/sigma" -> let m_assemble_occu = f_loc_assemble_12 m_occu list_pi in m_assemble_occu
+ | "pi/sigma/end" -> let m_assemble_occu = f_loc_assemble_123 m_occu list_pi list_x_end in m_assemble_occu
+ | "pi/1/2" -> let m_assemble_occu = f_loc_assemble_123 m_occu list_pi list_s_12 in m_assemble_occu
+ | "1/2" -> let m_assemble_occu = f_loc_assemble_12 m_occu list_s_12 in m_assemble_occu
+ | "pi1/pi2/1/2" -> let m_assemble_occu = f_loc_assemble_1234 m_occu list_pi list_s_12 list_s_12 in m_assemble_occu
+ | "By_hands" -> let m_assemble_occu = f_loc_assemble_main m_occu (miss_elem m_occ []) [] [] [] in m_assemble_occu
+ | _ -> invalid_arg "Unknown separation type of valence orbitals"
+ in
+ Printf.printf "%s\n" "End II/III";
+ Printf.printf "%s\n" "";
+ (assemble loc_m_core m_assemble_occu, m_assemble_occu)
+ in
+
+ (* Pattern matching for the separation type of the virtual MOs *)
+ let m_assemble_vir =
+
+ let m_assemble_vir =
+ Printf.printf "%s\n" "III/III";
+ Printf.printf "%s\n" "Localization of virtual orbitals";
+ Printf.printf "%s %i\n" "Number of orbitals" (Mat.dim2 m_vir);
+ match type_separation_vir with
+ | "full" -> let m_assemble_vir = f_loc_assemble_1 m_vir in m_assemble_vir
+ | "pi/sigma" -> let m_assemble_vir = f_loc_assemble_12 m_vir list_pi in m_assemble_vir
+ | "pi/sigma/end" -> let m_assemble_vir = f_loc_assemble_123 m_vir list_pi list_x_end in m_assemble_vir
+ | "pi/1/2" -> let m_assemble_vir = f_loc_assemble_123 m_vir list_pi list_s_12 in m_assemble_vir
+ | "1/2" -> let m_assemble_vir = f_loc_assemble_12 m_vir list_s_12 in m_assemble_vir
+ | "pi1/pi2/1/2" -> let m_assemble_vir = f_loc_assemble_1234 m_vir list_pi list_s_12 list_s_12 in m_assemble_vir
+ | "By_hands" -> let m_assemble_vir = f_loc_assemble_main m_vir (miss_elem m_vir []) [] [] [] in m_assemble_vir
+ | _ -> invalid_arg "Unknown separation type of virtual orbitals"
+ in
+ Printf.printf "%s\n" "End III/III";
+ Printf.printf "%s\n" "";
+ m_assemble_vir
+ in
+
+ (* Tack occupied and virtual MOs together*)
+ let m_assemble_loc = assemble m_assemble_occ m_assemble_vir
+ in
+
+ (* VI. Analysis *)
+
+ (* Function to compute the spatial extent of MOs *)
+ (* Coefficient matrix n_ao x n_mo -> vector where the i th element is equal to the spatial extent of the i th orbital *)
+ (* Matrix -> vector *)
+ let distrib mat=
+ if Mat.dim1 mat = 0
+ then Mat.as_vec mat
+ else
+ (let multipoles = AOBasis.multipole ao_basis in
+ let n_mo = Mat.dim2 mat in
+ let phi_x_phi =
+ Multipole.matrix_x multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat
+ in
+ let phi_y_phi =
+ Multipole.matrix_y multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat
+ in
+ let phi_z_phi =
+ Multipole.matrix_z multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat
+ in
+ let phi_x2_phi =
+ Multipole.matrix_x2 multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat
+ in
+ let phi_y2_phi =
+ Multipole.matrix_y2 multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat
+ in
+ let phi_z2_phi =
+ Multipole.matrix_z2 multipoles
+ |> MOBasis.mo_matrix_of_ao_matrix ~mo_coef:mat
+ in
+ Vec.init n_mo (fun i ->
+ phi_x2_phi.{i,i} -. phi_x_phi.{i,i}**2. +. phi_y2_phi.{i,i} -. phi_y_phi.{i,i}**2. +. phi_z2_phi.{i,i} -. phi_z_phi.{i,i}**2.))
+ in
+
+ (* Sorting function *)
+ (* tri insertion (<) list -> list in ascending order *)
+ (* parameter, list -> list *)
+ let rec insere comparaison elem liste = match liste with
+ | [] -> elem::[]
+ | tete::queue -> if comparaison elem tete
+ then elem :: liste
+ else tete :: insere comparaison elem queue
+ in
+ let rec tri_insertion comp = function
+ | [] -> []
+ | tete::queue -> insere comp tete (tri_insertion comp queue)
+ in
+
+ (* Sorting function to sort orbital spatial extent by ascending order *)
+ (* coefficient matrix n_ao x n_mo -> matrix n_ao x 2, first column corresponds to the spatial extent in function of the MOs number, the second column corresponds to the spatial extent in ascending order *)
+ (* matrix -> matrix *)
+ let m_distribution mat =
+ let vec_distrib= distrib mat in
+ let list_tri_distrib = tri_insertion (<) (Vec.to_list vec_distrib) in
+ let vec_tri_distrib = Vec.of_list list_tri_distrib
+ in
+ Mat.init_cols (Vec.dim vec_distrib) 2 (fun i j ->
+ if j=1
+ then vec_distrib.{i}
+ else vec_tri_distrib.{i})
+
+ in
+
+ (* Average/variance/standart deviation/median of spatial extent *)
+ (* Function to compute the average *)
+ let f_average mat =
+ if Mat.dim1 mat = 0
+ then 0.
+ else Vec.sum (distrib mat) /. float_of_int(Vec.dim (distrib mat))
+ in
+
+ (* Function to compute the variance *)
+ let f_variance mat =
+ if (Vec.dim (distrib mat)) = 0
+ then 0.
+ else Vec.sum(Vec.init (Vec.dim (distrib mat)) (fun i ->
+ ((distrib mat).{i}-. (f_average mat))**2.)) /. float_of_int(Vec.dim (distrib mat))
+ in
+
+ (* Function to compute the standard deviation *)
+ let f_stand_dev mat =
+ if (Vec.dim (distrib mat)) = 0
+ then 0.
+ else sqrt(abs_float(f_variance mat))
+ in
+
+ (* Fonction de calcul de la mediane *)
+ let f_median mat =
+ if (Vec.dim (distrib mat)) = 0
+ then 0.
+ else
+ let vec_distrib= distrib mat in
+ let list_tri_distrib = tri_insertion (<) (Vec.to_list vec_distrib) in
+ let vec_tri_distrib = Vec.of_list list_tri_distrib
+ in
+ if (Vec.dim vec_distrib) mod 2 = 0
+ then (vec_tri_distrib.{(Vec.dim vec_distrib)/2} +. vec_tri_distrib.{((Vec.dim vec_distrib)/2)+1}) /. 2.
+ else vec_tri_distrib.{int_of_float(float_of_int(Vec.dim vec_distrib)/. 2.) + 1}
+ in
+ (* Display function *)
+ (* Coefficient matrix n_ao x n_mo -> string *)
+ (* matrix -> string *)
+ let analyse mat =
+ let average = f_average mat in
+ let variance = f_variance mat in
+ let stand_dev = f_stand_dev mat in
+ let median = f_median mat
+ in
+ "Average : "^string_of_float(average)^"; Median : "^string_of_float(median)^"; Variance : "^string_of_float(variance)^"; Standard deviation : "^string_of_float(stand_dev)
+ in
+ (* Display the numer of MOs *)
+ (* Coefficient matrix n_ao x n_mo -> string *)
+ (* matrix -> string *)
+ let n_orb mat = "Number of molecular orbitals : "^string_of_int(Mat.dim2 mat) in
+
+ (* Display *)
+ Printf.printf "%s\n" "";
+ Printf.printf "%s\n" (n_orb m_C);
+ Printf.printf "%s %i\n" "Number of pi orbitals : " (List.length (list_pi m_C));
+ Printf.printf "%s %i\n" "Number of occupied pi orbitals : " (List.length (list_pi m_occ));
+ Printf.printf "%s %i\n" "Number of virtual pi orbitals : " (List.length (list_pi m_vir));
+ Printf.printf "%s %i\n" "Number of sigma orbitals : " (List.length (miss_elem m_C (list_pi m_C)));
+ Printf.printf "%s %i\n" "Number of occupied sigma orbitals : " (List.length (miss_elem m_occ (list_pi m_occ)));
+ Printf.printf "%s %i\n" "Number of virtual sigma orbitals : " (List.length (miss_elem m_vir (list_pi m_vir)));
+
+ Printf.printf "%s\n" "";
+
+ Printf.printf "%s %s\n" "All MOs before the localization" (analyse m_C);
+ Printf.printf "%s %s\n" "All MOs after the localization" (analyse m_assemble_loc);
+ Printf.printf "%s\n" "";
+ Util.debug_matrix "Distribution of the spatial extent, before localization / sorting before localization / after localization / sorting after localization" (assemble(m_distribution m_C) (m_distribution m_assemble_loc));
+
+ Printf.printf "%s\n" "";
+ Printf.printf "%s %s\n" "Occupied orbitals : " (n_orb m_occ);
+ Printf.printf "%s %s\n" "Occupied orbitals before localization" (analyse m_occ);
+ Printf.printf "%s %s\n" "Occupied orbitals after localization" (analyse m_assemble_occ);
+ Printf.printf "%s\n" "";
+
+ Printf.printf "%s\n" "";
+ Printf.printf "%s %s\n" "Core orbitals : " (n_orb m_core);
+ Printf.printf "%s %s\n" "Core orbitalses before localization : " (analyse m_core);
+ Printf.printf "%s %s\n" "Core orbitals after localization : " (analyse loc_m_core);
+ Printf.printf "%s\n" "";
+
+ Printf.printf "%s\n" "";
+ Printf.printf "%s %s\n" "Valence orbitals : " (n_orb m_occu);
+ Printf.printf "%s %s\n" "Valence orbitals before localization : " (analyse m_occu);
+ Printf.printf "%s %s\n" "Valence rbitals after localization : " (analyse m_assemble_occu);
+ Printf.printf "%s\n" "";
+
+ Printf.printf "%s\n" "";
+ Printf.printf "%s %s\n" "Virtual orbitals : " (n_orb m_vir);
+ Printf.printf "%s %s\n" "Virtual orbitals before localization : " (analyse m_vir);
+ Printf.printf "%s %s\n" "Virtual orbitals after localization : " (analyse m_assemble_vir);
+ Printf.printf "%s\n" "";
+
+m_assemble_loc
+
+
diff --git a/run_Localisation.ml b/run_Localisation.ml
new file mode 100644
index 0000000..32eb5ae
--- /dev/null
+++ b/run_Localisation.ml
@@ -0,0 +1,124 @@
+(* ./run_Localisation.native -b basis -x xyz -c charge -o name.mos -i EZFIOdirectory > name.out *)
+(*
+#.mos contains the localised orbitales
+#.out contains the localization convergence and the analysis of the spatial extent of the orbitales
+*)
+
+open Lacaml.D
+
+let read_qp_mo dirname =
+ let ic = Unix.open_process_in ("zcat "^dirname^"/mo_basis/mo_coef.gz") in
+ let check = String.trim (input_line ic) in
+ assert (check = "2");
+ let int_list =
+ input_line ic
+ |> String.split_on_char ' '
+ |> List.filter (fun x -> x <> "")
+ |> List.map int_of_string
+ in
+ let n_ao, n_mo =
+ match int_list with
+ | [ x ; y ] -> x, y
+ | _ -> assert false
+ in
+ let result =
+ Mat.init_cols n_ao n_mo (fun i j ->
+ let s = input_line ic in
+ Scanf.sscanf s " %f " (fun x -> x)
+ )
+ in
+ let exit_code = Unix.close_process_in ic in
+ assert (exit_code = Unix.WEXITED 0);
+ result
+
+
+
+let () =
+ let open Command_line in
+ begin
+ set_header_doc (Sys.argv.(0) ^ " - QCaml command");
+ set_description_doc "Localizes MOs";
+ set_specs
+ [ { short='b' ; long="basis" ; opt=Mandatory;
+ arg=With_arg "