10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2025-01-03 01:55:40 +01:00

Working on vectorized code

This commit is contained in:
Anthony Scemama 2018-01-25 13:59:31 +01:00
parent 15ef05a9b1
commit 8a851eb4ed

View File

@ -10,10 +10,13 @@ let hvrr_two_e m (angMom_a, angMom_b, angMom_c, angMom_d)
(maxm, zero_m_array)
(expo_b, expo_d)
(expo_inv_p, expo_inv_q)
(center_ab, center_cd, center_pq) coef_prod
map
(center_ab, center_cd, center_pq)
coef_prod map
=
let k = 0 in
let getk a = a.(k) in
let totAngMom_a = Angular_momentum.to_int totAngMom_a
and totAngMom_b = Angular_momentum.to_int totAngMom_b
and totAngMom_c = Angular_momentum.to_int totAngMom_c
@ -22,11 +25,14 @@ let hvrr_two_e m (angMom_a, angMom_b, angMom_c, angMom_d)
(** Vertical recurrence relations *)
let rec vrr0 m angMom_a = function
| 0 -> Array.mapi (fun j c -> c *. zero_m_array.(j).(m)) coef_prod
| 0 -> Array.mapi (fun k c -> c *. zero_m_array.(k).(m)) coef_prod
|> getk
| 1 -> let i = if angMom_a.(0) = 1 then 0 else if angMom_a.(1) = 1 then 1 else 2
in Array.mapi (fun j c ->
c *. expo_inv_p *.( (Coordinate.coord center_pq.(j) i) *. zero_m_array.(j).(m+1)
-. expo_b *. (Coordinate.coord center_ab i) *. zero_m_array.(j).(m) ) ) coef_prod
in
Array.mapi (fun k c -> c *. expo_inv_p *.
( (Coordinate.coord center_pq.(k) i) *. zero_m_array.(k).(m+1)
-. expo_b *. (Coordinate.coord center_ab i) *. zero_m_array.(k).(m) ) ) coef_prod
|> getk
| totAngMom_a ->
let key = Zkey.of_int_tuple (Zkey.Three
@ -46,27 +52,20 @@ let hvrr_two_e m (angMom_a, angMom_b, angMom_c, angMom_d)
in
am.(xyz) <- am.(xyz) - 1;
amm.(xyz) <- amm.(xyz) - 2;
if am.(xyz) < 0 then Array.map (fun _ -> 0.) coef_prod
else
let result =
vrr0 (m+1) am (totAngMom_a-1)
|> Array.mapi (fun j x -> x *. expo_inv_p *. (Coordinate.coord center_pq.(j) xyz))
|> Array.map2 (+.)
(vrr0 m am (totAngMom_a-1)
|> Array.map (fun x -> -. x *. expo_b *. expo_inv_p *. (Coordinate.coord center_ab xyz))
)
in
if amm.(xyz) < 0 then result else
vrr0 (m+1) amm (totAngMom_a-2)
|> Array.map (fun x -> x *. expo_inv_p)
|> Array.map2 (+.) (
vrr0 m amm (totAngMom_a-2)
|> Array.map (fun x -> x *. (float_of_int am.(xyz)) *. expo_inv_p *. 0.5))
|> Array.map2 (+.) result
)
if am.(xyz) < 0 then 0. else
Array.mapi (fun k _ ->
(-. expo_b *. expo_inv_p *. (Coordinate.coord center_ab xyz))
*. (vrr0 m am (totAngMom_a-1) )
+. (expo_inv_p *. (Coordinate.coord center_pq.(k) xyz))
*.(vrr0 (m+1) am (totAngMom_a-1) )
+. (if amm.(xyz) < 0 then 0. else
((float_of_int am.(xyz)) *. expo_inv_p *. 0.5)
*. (vrr0 m amm (totAngMom_a-2)
+. expo_inv_p *. (vrr0 (m+1) amm (totAngMom_a-2) ) ) )
) coef_prod
|> getk
)
in
if not found then
Zmap.add map.(m) key result;
result
@ -74,7 +73,8 @@ let hvrr_two_e m (angMom_a, angMom_b, angMom_c, angMom_d)
and vrr m angMom_a angMom_c totAngMom_a totAngMom_c =
match (totAngMom_a, totAngMom_c) with
| (0,0) -> Array.mapi (fun j c -> c *. zero_m_array.(j).(m)) coef_prod
| (0,0) -> Array.mapi (fun k c -> c *. zero_m_array.(k).(m)) coef_prod
|> getk
| (_,0) -> vrr0 m angMom_a totAngMom_a
| (_,_) ->
@ -99,26 +99,21 @@ let hvrr_two_e m (angMom_a, angMom_b, angMom_c, angMom_d)
am.(xyz) <- am.(xyz) - 1;
cm.(xyz) <- cm.(xyz) - 1;
cmm.(xyz) <- cmm.(xyz) - 2;
if cm.(xyz) < 0 then Array.map (fun _ -> 0.) coef_prod else
let result =
Array.map2 (-.)
( Array.mapi (fun j x -> -. x *. expo_d.(j) *. expo_inv_q.(j) *. (Coordinate.coord center_cd.(j) xyz) ) (vrr m angMom_a cm totAngMom_a (totAngMom_c-1) ) )
( Array.mapi (fun j x -> x *. expo_inv_q.(j) *. (Coordinate.coord center_pq.(j) xyz)) (vrr (m+1) angMom_a cm totAngMom_a (totAngMom_c-1) ) )
in
let result =
if cmm.(xyz) < 0 then result else
Array.map2 (+.) result
( Array.mapi (fun j x -> x *. (float_of_int cm.(xyz)) *. expo_inv_q.(j) *. 0.5 )
(vrr m angMom_a cmm totAngMom_a (totAngMom_c-2)) )
|> Array.map2 (+.)
( Array.mapi (fun j x -> x *. expo_inv_q.(j))
(vrr (m+1) angMom_a cmm totAngMom_a (totAngMom_c-2) ) )
in
if am.(xyz) lor cm.(xyz) < 0 then result else
Array.map2 (-.) result
(Array.mapi (fun j x -> x *. (float_of_int angMom_a.(xyz)) *. expo_inv_p *. expo_inv_q.(j) *. 0.5 )
(vrr (m+1) am cm (totAngMom_a-1) (totAngMom_c-1) ) )
)
if cm.(xyz) < 0 then 0. else
Array.mapi (fun k _ ->
(-. expo_d.(k) *. expo_inv_q.(k) *. (Coordinate.coord center_cd.(k) xyz) )
*.(vrr m angMom_a cm totAngMom_a (totAngMom_c-1) )
-. (expo_inv_q.(k) *. (Coordinate.coord center_pq.(k) xyz))
*.(vrr (m+1) angMom_a cm totAngMom_a (totAngMom_c-1) )
+. (if cmm.(xyz) < 0 then 0. else
((float_of_int cm.(xyz)) *. expo_inv_q.(k) *. 0.5 )
*.(vrr m angMom_a cmm totAngMom_a (totAngMom_c-2)
+. expo_inv_q.(k) *. (vrr (m+1) angMom_a cmm totAngMom_a (totAngMom_c-2) ) ) )
-. (if am.(xyz) lor cm.(xyz) < 0 then 0. else
((float_of_int angMom_a.(xyz)) *. expo_inv_p *. expo_inv_q.(k) *. 0.5 )
*.(vrr (m+1) am cm (totAngMom_a-1) (totAngMom_c-1) ) )) coef_prod
|> getk
)
in
if not found then
Zmap.add map.(m) key result;
@ -136,10 +131,8 @@ let hvrr_two_e m (angMom_a, angMom_b, angMom_c, angMom_d)
| 1 -> let xyz = if angMom_b.(0) = 1 then 0 else if angMom_b.(1) = 1 then 1 else 2 in
let ap = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |] in
ap.(xyz) <- ap.(xyz) + 1;
Array.map2 (+.)
(vrr m ap angMom_c (totAngMom_a+1) totAngMom_c)
(Array.map (fun x -> x *. (Coordinate.coord center_ab xyz))
(vrr m angMom_a angMom_c totAngMom_a totAngMom_c) )
vrr m ap angMom_c (totAngMom_a+1) totAngMom_c
+. (Coordinate.coord center_ab xyz) *. (vrr m angMom_a angMom_c totAngMom_a totAngMom_c)
| _ ->
let ap = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |]
and bm = [| angMom_b.(0) ; angMom_b.(1) ; angMom_b.(2) |]
@ -151,12 +144,11 @@ let hvrr_two_e m (angMom_a, angMom_b, angMom_c, angMom_d)
in
ap.(xyz) <- ap.(xyz) + 1;
bm.(xyz) <- bm.(xyz) - 1;
if (bm.(xyz) < 0) then Array.map (fun _ -> 0.) coef_prod else
Array.map2 (+.)
(hrr0 m ap bm angMom_c (totAngMom_a+1) (totAngMom_b-1) totAngMom_c )
(Array.map (fun x -> x *. (Coordinate.coord center_ab xyz))
(hrr0 m angMom_a bm angMom_c totAngMom_a (totAngMom_b-1) totAngMom_c )
)
if (bm.(xyz) < 0) then 0. else
hrr0 m ap bm angMom_c (totAngMom_a+1) (totAngMom_b-1) totAngMom_c
+. (Coordinate.coord center_ab xyz)
*.(hrr0 m angMom_a bm angMom_c totAngMom_a (totAngMom_b-1)
totAngMom_c )
and hrr m angMom_a angMom_b angMom_c angMom_d
totAngMom_a totAngMom_b totAngMom_c totAngMom_d =
@ -176,12 +168,12 @@ let hvrr_two_e m (angMom_a, angMom_b, angMom_c, angMom_d)
in
cp.(xyz) <- cp.(xyz) + 1;
dm.(xyz) <- dm.(xyz) - 1;
Array.map2 (+.)
(hrr m angMom_a angMom_b cp dm totAngMom_a totAngMom_b
(totAngMom_c+1) (totAngMom_d-1) )
(Array.mapi (fun j x -> x *. (Coordinate.coord center_cd.(j) xyz))
(hrr m angMom_a angMom_b angMom_c dm totAngMom_a totAngMom_b
totAngMom_c (totAngMom_d-1) ) )
let h1, h2 =
hrr m angMom_a angMom_b cp dm totAngMom_a totAngMom_b (totAngMom_c+1) (totAngMom_d-1) ,
hrr m angMom_a angMom_b angMom_c dm totAngMom_a totAngMom_b totAngMom_c (totAngMom_d-1)
in
Array.map (fun center_cd -> h1 +. h2 *. (Coordinate.coord center_cd xyz)) center_cd
|> getk
in
hrr m angMom_a angMom_b angMom_c angMom_d totAngMom_a totAngMom_b
totAngMom_c totAngMom_d
@ -222,7 +214,7 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
| Angular_momentum.(S,S,S,S) ->
contracted_class.(0) <-
Array.fold_left (fun accu shell_ab -> accu +.
Array.fold_left (fun accu shell_cd ->
Array.fold_left (fun accu shell_cd ->
let coef_prod =
shell_ab.Shell_pair.coef *. shell_cd.Shell_pair.coef
in
@ -234,19 +226,19 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
let expo_pq_inv =
shell_ab.Shell_pair.expo_inv +. shell_cd.Shell_pair.expo_inv
in
let center_pq =
let center_pq =
Coordinate.(shell_ab.Shell_pair.center |- shell_cd.Shell_pair.center)
in
let norm_pq_sq =
Coordinate.dot center_pq center_pq
in
let zero_m_array =
let zero_m_array =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
let coef_prod =
shell_ab.Shell_pair.coef *. shell_cd.Shell_pair.coef
shell_ab.Shell_pair.coef *. shell_cd.Shell_pair.coef
in
let integral =
zero_m_array.(0)
@ -257,46 +249,49 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
) 0. shell_p
| _ ->
begin
Array.iter (fun shell_ab ->
let b = shell_ab.Shell_pair.j in
let common =
Array.map (fun shell_cd ->
let coef_prod =
shell_ab.Shell_pair.coef *. shell_cd.Shell_pair.coef
in
let coef_prod =
if (abs_float coef_prod) < 1.e-4*.cutoff then
0. else coef_prod
in
let expo_pq_inv =
shell_ab.Shell_pair.expo_inv +. shell_cd.Shell_pair.expo_inv
in
let center_pq =
Coordinate.(shell_ab.Shell_pair.center |- shell_cd.Shell_pair.center)
in
let norm_pq_sq =
Coordinate.dot center_pq center_pq
in
let zero_m_array =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
let d = shell_cd.Shell_pair.j in
(zero_m_array, shell_cd.Shell_pair.expo_inv,
Contracted_shell.expo shell_d d, shell_cd.Shell_pair.center_ab,
center_pq,coef_prod)
) shell_q
Array.iter (fun shell_ab ->
let b = shell_ab.Shell_pair.j in
let common =
Array.map (fun shell_cd ->
let coef_prod =
shell_ab.Shell_pair.coef *. shell_cd.Shell_pair.coef
in
let (zero_m_array, expo_inv, d, center_cd, center_pq, coef_prod) =
Array.map (fun (x,_,_,_,_,_) -> x) common,
Array.map (fun (_,x,_,_,_,_) -> x) common,
Array.map (fun (_,_,x,_,_,_) -> x) common,
Array.map (fun (_,_,_,x,_,_) -> x) common,
Array.map (fun (_,_,_,_,x,_) -> x) common,
Array.map (fun (_,_,_,_,_,x) -> x) common
let coef_prod =
if (abs_float coef_prod) < 1.e-4*.cutoff then
0. else coef_prod
in
let expo_pq_inv =
shell_ab.Shell_pair.expo_inv +. shell_cd.Shell_pair.expo_inv
in
let center_pq =
Coordinate.(shell_ab.Shell_pair.center |- shell_cd.Shell_pair.center)
in
let norm_pq_sq =
Coordinate.dot center_pq center_pq
in
let zero_m_array =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
let d = shell_cd.Shell_pair.j in
(zero_m_array, shell_cd.Shell_pair.expo_inv,
Contracted_shell.expo shell_d d, shell_cd.Shell_pair.center_ab,
center_pq,coef_prod)
) shell_q
in
Array.iteri (fun cd shell_cd ->
try
let (zero_m_array, expo_inv, d, center_cd,
center_pq,coef_prod) = common.(cd)
in
let zero_m_array = [| zero_m_array |]
and expo_inv = [| expo_inv |]
and d = [| d |]
and center_cd = [| center_cd |]
and center_pq = [| center_pq |]
and coef_prod = [| coef_prod |]
in
let map = Array.init maxm (fun _ -> Zmap.create (Array.length class_indices)) in
(* Compute the integral class from the primitive shell quartet *)
@ -308,23 +303,28 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
[| a.(6) ; a.(7) ; a.(8) |],
[| a.(9) ; a.(10) ; a.(11) |] )
in
try
let norm =
shell_ab.Shell_pair.norm_fun angMomA angMomB *. shell_q.(0).Shell_pair.norm_fun angMomC angMomD
shell_ab.Shell_pair.norm_fun angMomA angMomB *. shell_cd.Shell_pair.norm_fun angMomC angMomD
in
let integral = Array.fold_left (fun accu x -> accu +. norm *. x) 0. (
hvrr_two_e 0 (angMomA, angMomB, angMomC, angMomD)
(Contracted_shell.totAngMom shell_a, Contracted_shell.totAngMom shell_b,
Contracted_shell.totAngMom shell_c, Contracted_shell.totAngMom shell_d)
(maxm, zero_m_array)
(Contracted_shell.expo shell_b b, d)
(shell_ab.Shell_pair.expo_inv, expo_inv)
(shell_ab.Shell_pair.center_ab, center_cd, center_pq)
coef_prod map )
let integral = chop norm (fun () ->
hvrr_two_e 0 (angMomA, angMomB, angMomC, angMomD)
(Contracted_shell.totAngMom shell_a, Contracted_shell.totAngMom shell_b,
Contracted_shell.totAngMom shell_c, Contracted_shell.totAngMom shell_d)
(maxm, zero_m_array)
(Contracted_shell.expo shell_b b, d)
(shell_ab.Shell_pair.expo_inv, expo_inv)
(shell_ab.Shell_pair.center_ab, center_cd, center_pq)
coef_prod map )
in
contracted_class.(i) <- contracted_class.(i) +. integral
with NullQuartet -> ()
) class_indices
) shell_p
end
with NullQuartet -> ()
) shell_q
) shell_p
end;
let result =