10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2025-01-03 01:55:40 +01:00

Documentation

This commit is contained in:
Anthony Scemama 2018-02-24 23:57:38 +01:00
parent c23821e098
commit 8918f49302
27 changed files with 276 additions and 61 deletions

28
.ocamlinit Normal file
View File

@ -0,0 +1,28 @@
let () =
try Topdirs.dir_directory (Sys.getenv "OCAML_TOPLEVEL_PATH")
with Not_found -> ()
;;
#use "topfind";;
#require "lacaml";;
#directory "_build";;
#directory "_build/Utils";;
#directory "_build/Basis";;
#directory "_build/HartreeFock";;
#load "Powers.cmo";;
#load "Zkey.cmo";;
#load "AngularMomentum.cmo";;
#load "Constants.cmo";;
#load "Util.cmo";;
#load "Coordinate.cmo";;
#load "Zmap.cmo";;
#load "Zkey.cmo";;
#load "ContractedShell.cmo";;
#load "ShellPair.cmo";;
#load "TwoElectronRR.cmo";;
#load "ERI.cmo";;
#use "topfind";;

View File

@ -10,6 +10,8 @@ module Bs = Basis
module Cs = ContractedShell
module Csp = ContractedShellPair
let cutoff = integrals_cutoff
(** (00|00)^m : Fundamental electron repulsion integral
$ \int \int \phi_p(r1) 1/r_{12} \phi_q(r2) dr_1 dr_2 $

View File

@ -11,6 +11,7 @@ module Sp = ShellPair
type t = Mat.t
let cutoff = integrals_cutoff
(** Computes all the kinetic integrals of the contracted shell pair *)
let contracted_class shell_a shell_b : float Zmap.t =

View File

@ -33,6 +33,8 @@ let contracted_class_shell_pair shell_p geometry: float Zmap.t =
OneElectronRR.contracted_class_shell_pair ~zero_m shell_p geometry
let cutoff = integrals_cutoff
let cutoff2 = cutoff *. cutoff
exception NullIntegral

View File

@ -10,11 +10,6 @@ module Csp = ContractedShellPair
module Po = Powers
module Sp = ShellPair
(** In chop f g, evaluate g only if f is non zero, and return f *. (g ()) *)
let chop f g =
if (abs_float f) < cutoff then 0.
else f *. (g ())
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
@ -84,7 +79,7 @@ let hvrr_one_e angMom_a angMom_b
let bm = Po.decr xyz angMom_b in
let h1 = hrr ap bm in
let f2 = Co.get xyz center_ab in
if abs_float f2 < cutoff then h1 else
if abs_float f2 < integrals_cutoff then h1 else
let h2 = hrr angMom_a bm in
h1 +. f2 *. h2
@ -130,7 +125,7 @@ let contracted_class_shell_pair ~zero_m shell_p geometry : float Zmap.t =
let coef_prod = shell_p.Csp.coef.(ab) in
(** Screening on the product of coefficients *)
if abs_float coef_prod < 1.e-3 *. cutoff then
if abs_float coef_prod < 1.e-3 *. integrals_cutoff then
raise NullPair;

View File

@ -11,6 +11,8 @@ module Cs = ContractedShell
module Csp = ContractedShellPair
module Sp = ShellPair
let cutoff = integrals_cutoff
(** Computes all the overlap integrals of the contracted shell pair *)
let contracted_class shell_a shell_b : float Zmap.t =
@ -45,7 +47,7 @@ let contracted_class shell_a shell_b : float Zmap.t =
shell_p.Csp.coef.(ab)
in
(** Screening on thr product of coefficients *)
if (abs_float coef_prod) > 1.e-4*.cutoff then
if (abs_float coef_prod) > 1.e-3*.cutoff then
begin
let expo_inv =
shell_p.Csp.expo_inv.(ab)

View File

@ -1,5 +1,4 @@
open Util
open Constants
module Am = AngularMomentum
module Co = Coordinate
@ -8,8 +7,7 @@ module Csp = ContractedShellPair
module Sp = ShellPair
module Po = Powers
let debug=false
let cutoff = Constants.integrals_cutoff
let cutoff2 = cutoff *. cutoff
exception NullQuartet

View File

@ -11,7 +11,7 @@ module Po = Powers
exception NullQuartet
exception Found
let cutoff = Constants.cutoff
let cutoff = Constants.integrals_cutoff
let cutoff2 = cutoff *. cutoff
let at_least_one_valid arr =

View File

@ -11,7 +11,9 @@ MLLFILES=$(wildcard */*.mll) $(wildcard *.mll) Utils/math_functions.c
MLYFILES=$(wildcard */*.mly) $(wildcard *.mly)
MLFILES= $(wildcard */*.ml) $(wildcard *.ml)
MLIFILES=$(wildcard */*.mli) $(wildcard *.mli)
ALL_EXE=$(patsubst %.ml,%.native,$(wildcard run_*.ml))
ALL_NATIVE=$(patsubst %.ml,%.native,$(wildcard run_*.ml))
ALL_BYTE=$(patsubst %.ml,%.byte,$(wildcard run_*.ml))
ALL_EXE=$(ALL_BYTE) $(ALL_NATIVE)
.PHONY: default
@ -32,7 +34,6 @@ doc: qpackage.odocl
%.byte: $(MLFILES) $(MLIFILES) $(MLLFILES) $(MLYFILES)
rm -f -- $*
$(OCAMLBUILD) $*.byte -use-ocamlfind $(PKGS)
ln -s $*.byte $*
%.native: $(MLFILES) $(MLIFILES) $(MLLFILES) $(MLYFILES)
rm -f -- $*
@ -42,12 +43,10 @@ doc: qpackage.odocl
%.p.native: $(MLFILES) $(MLIFILES) $(MLLFILES) $(MLYFILES)
rm -f -- $*
$(OCAMLBUILD) $*.p.native -use-ocamlfind $(PKGS)
ln -s $*.p.native $*
%.p.byte: $(MLFILES) $(MLIFILES) $(MLLFILES) $(MLYFILES)
rm -f -- $*
$(OCAMLBUILD) -ocamlc ocamlcp $*.byte -use-ocamlfind $(PKGS)
ln -s $*.byte $*
clean:
rm -rf _build $(ALL_EXE) $(ALL_TESTS) *.native *.byte

View File

@ -141,7 +141,7 @@ let covalent_radius x =
| Te -> 1.38 | I -> 1.39 | Xe -> 1.40 | Pt -> 1.30
in
Constants.a0 *. (result x)
|> Radius.of_float
|> NonNegativeFloat.of_float
let vdw_radius x =
@ -162,7 +162,7 @@ let vdw_radius x =
| Te -> 2.06 | I -> 1.98 | Xe -> 2.16 | Pt -> 1.75
in
Constants.a0 *. (result x)
|> Radius.of_float
|> NonNegativeFloat.of_float
let mass c =

View File

@ -20,6 +20,6 @@ val to_int : t -> int
val of_int : int -> t
val to_charge : t -> Charge.t
val of_charge : Charge.t -> t
val covalent_radius : t -> Radius.t
val vdw_radius : t -> Radius.t
val covalent_radius : t -> NonNegativeFloat.t
val vdw_radius : t -> NonNegativeFloat.t
val mass : t -> Mass.t

View File

@ -1 +1 @@
include PositiveFloat
include NonNegativeFloat

View File

@ -1,12 +1 @@
type t = {
x : float ;
y : float ;
z : float ;
}
let make { Point.x ; y ; z } = { x ; y ; z }
(* = %identity *)
include Bohr

View File

@ -1,3 +1,5 @@
(** 3D point in cartesian coordinates, where units are Angstroms. *)
type t = private {
x : float ;
y : float ;
@ -7,4 +9,3 @@ type t = private {
val make : Point.t -> t

87
Utils/AngularMomentum.mli Normal file
View File

@ -0,0 +1,87 @@
(** Azimuthal quantum number, represented as s,p,d,... *)
type t = S | P | D | F | G | H | I | J | K | L | M | N | O
exception AngularMomentumError of string
(** Raised when the {!AngularMomentum.t} element can't be created.
*)
val of_char : char -> t
(** Returns an {!AngularMomentum.t} when a shell is given as a character (case
insensitive).
Example:
[AngularMomentum.of_char 'p' -> AngularMomentum.P]
*)
val to_string : t -> string
(**
[AngularMomentum.(to_string D) -> "D"]
*)
val to_char : t -> char
(**
[AngularMomentum.(to_char D) -> 'D']
*)
val to_int : t -> int
(**
Returns the l{_max} value of the shell.
Example:
[AngularMomentum.of_int 3 -> AngularMomentum.F]
*)
val of_int : int -> t
(**
Opposite of {!of_int}.
Example:
[AngularMomentum.of_int 3 -> AngularMomentum.F]
*)
type kind =
Singlet of t
| Doublet of (t * t)
| Triplet of (t * t * t)
| Quartet of (t * t * t * t)
val n_functions : t -> int
(** Number of cartesian functions in shell.
Example:
[AngularMomentum.n_functions D -> 6]
*)
val zkey_array : kind -> Zkey.t array
(** Array of {!Zkey.t}, where each element is a a key associated with the
the powers of x,y,z.
Example:
{[
AngularMomentum.( zkey_array Doublet (P,S) ) ->
[| {Zkey.left = 0; right = 1125899906842624} ;
{Zkey.left = 0; right = 1099511627776} ;
{Zkey.left = 0; right = 1073741824} |]
=
let s,x,y,z =
Powers.( of_int_tuple (0,0,0),
of_int_tuple (1,0,0),
of_int_tuple (0,1,0),
of_int_tuple (0,0,1) )
in
Array.map (fun (a,b) -> {!Zkey.of_powers_six} a b)
[| (x,s) ; (y,s) ; (z,s) |]
]}
*)

View File

@ -5,8 +5,7 @@ type t = {
}
let make { Point.x ; y ; z } = { x ; y ; z }
(* = %identity *)
external make : Point.t -> t = "%identity"

View File

@ -1,3 +1,5 @@
(** 3D point in cartesian coordinates, where units are atomic units (Bohr). *)
type t = private {
x : float ;
y : float ;

View File

@ -1,4 +1,5 @@
let cutoff = 1.e-15
let integrals_cutoff = 1.e-15
let epsilon = 1.e-20
(** Constants *)
let pi = acos (-1.)
@ -7,5 +8,5 @@ let sq_pi_over_two = sq_pi *. 0.5
let pi_inv = 1. /. pi
let two_over_sq_pi = 2. /. (sqrt pi)
let a0 = 0.529_177_210_67
let a0 = 0.529_177_210_671_2
let a0_inv = 1. /. a0

View File

@ -1,8 +1,26 @@
val cutoff : float
val epsilon : float
(** Value below which a float is considered null. Default is 10{^-20}. *)
val integrals_cutoff : float
(** Cutoff value for integrals. Default is 10{^-15}. *)
val pi : float
(** pi = 3.141_592_653_589_793_12 *)
val sq_pi : float
(** [sqrt pi] *)
val sq_pi_over_two : float
(** [(sqrt pi) /. 2.] *)
val pi_inv : float
(** [ 1. /. pi ] *)
val two_over_sq_pi : float
(** [ 2. /. (sqrt pi) ] *)
val a0 : float
(** Bohr radius : a{_0} = 0.529_177_210_671_2 Angstrom *)
val a0_inv : float
(** [ 1. /. a0 ] *)

View File

@ -1,12 +1,6 @@
type point = Point.t
type bohr = Bohr.t
type angstrom = Angstrom.t
let a_to_b a = Constants.a0_inv *. a
let b_to_a b = Constants.a0 *. b
let bohr_to_angstrom { Bohr.x ; y ; z } =
let b_to_a b = Constants.a0 *. b in
Angstrom.make
{
Point.
@ -15,7 +9,10 @@ let bohr_to_angstrom { Bohr.x ; y ; z } =
z = b_to_a z ;
}
let angstrom_to_bohr { Angstrom.x ; y ; z } =
let a_to_b a = Constants.a0_inv *. a in
Bohr.make
{
Point.
@ -24,3 +21,4 @@ let angstrom_to_bohr { Angstrom.x ; y ; z } =
z = a_to_b z ;
}

View File

@ -1,3 +1,6 @@
(** Coordinate_type can be Bohr or Angstrom. This module provides the conversion
functions from {!Bohr.t} to {!Angstrom.t} and from {!Angstrom.t} to {!Bohr.t} *)
type bohr = Bohr.t
type angstrom = Angstrom.t

17
Utils/Electrons.mli Normal file
View File

@ -0,0 +1,17 @@
(** Information related to electrons. *)
type t = {
n_alpha : int ; (** Number of alpha electrons *)
n_beta : int ; (** Number of beta electrons *)
multiplicity : int; (** Spin multiplicity: 2S+1 *)
}
val make : ?multiplicity:int -> ?charge:int -> Nuclei.t -> t
(** Creates the data relative to electrons for a molecular system
described by {!Nuclei.t} for a given total charge and spin multiplicity.
@param multiplicity default is 1
@param charge default is 0
@raise Invalid_argument if the spin multiplicity is not compatible with
the molecule and the total charge.
*)

View File

@ -5,6 +5,7 @@ let of_float x =
x
external to_float : t -> float = "%identity"
external unsafe_of_float : float -> t = "%identity"
let to_string x =
let f = to_float x in string_of_float f

View File

@ -1 +0,0 @@
include PositiveFloat

View File

@ -1,13 +1,22 @@
(** Functions from libm *)
external erf_float : float -> float = "erf_float_bytecode" "erf_float" [@@unboxed] [@@noalloc]
external erfc_float : float -> float = "erfc_float_bytecode" "erfc_float" [@@unboxed] [@@noalloc]
external gamma_float : float -> float = "gamma_float_bytecode" "gamma_float" [@@unboxed] [@@noalloc]
(** All utilities which should be included in all source files are defined here *)
(** {1 Functions from libm} *)
open Constants
open Lacaml.D
let factmax = 150
external erf_float : float -> float = "erf_float_bytecode" "erf_float"
[@@unboxed] [@@noalloc]
external erfc_float : float -> float = "erfc_float_bytecode" "erfc_float"
[@@unboxed] [@@noalloc]
external gamma_float : float -> float = "gamma_float_bytecode" "gamma_float"
[@@unboxed] [@@noalloc]
@ -79,8 +88,6 @@ let fact_memo =
(** Factorial function.
@raise Invalid_argument for negative or arguments >100. *)
let fact = function
| i when (i < 0) ->
raise (Invalid_argument "Argument of factorial should be non-negative")
@ -89,24 +96,23 @@ let fact = function
| i -> fact_memo.(i)
(** Integer powers of floats *)
let rec pow a = function
| 0 -> 1.
| 1 -> a
| 2 -> a *. a
| 3 -> a *. a *. a
| -1 -> 1. /. a
| n when (n<0) -> pow (1./.a) (-n)
| n ->
| n when n > 0 ->
let b = pow a (n / 2) in
b *. b *. (if n mod 2 = 0 then 1. else a)
;;
| n when n < 0 -> pow (1./.a) (-n)
| _ -> assert false
(** In chop f g, evaluate g only if f is non zero, and return f *. (g ()) *)
let chop f g =
if (abs_float f) < cutoff then 0.
if (abs_float f) < Constants.epsilon then 0.
else f *. (g ())
@ -162,7 +168,7 @@ let diagonalize_symm h =
in
v, result
let xt_o_x o x =
let xt_o_x ~o ~x =
gemm o x
|> gemm ~transa:`T x

67
Utils/Util.mli Normal file
View File

@ -0,0 +1,67 @@
(** All utilities which should be included in all source files are defined here *)
(** {1 Functions from libm} *)
external erf_float : float -> float = "erf_float_bytecode" "erf_float"
[@@unboxed] [@@noalloc]
(** Error function [erf] from [libm] *)
external erfc_float : float -> float = "erfc_float_bytecode" "erfc_float"
[@@unboxed] [@@noalloc]
(** Complementary error function [erfc] from [libm] *)
external gamma_float : float -> float = "gamma_float_bytecode" "gamma_float"
[@@unboxed] [@@noalloc]
(** Gamma function [gamma] from [libm] *)
(** {1 General functions} *)
val fact : int -> float
(** Factorial function.
@raise Invalid_argument for negative arguments or arguments >100.
*)
val pow : float -> int -> float
(** Fast implementation of the power function for small integer powers *)
val chop : float -> (unit -> float) -> float
(** In [chop a f], evaluate [f] only if the absolute value of [a] is larger
than {!Constants.epsilon}, and return [a *. f ()].
*)
(** {1 Functions related to the Boys function} *)
val incomplete_gamma : alpha:float -> float -> float
(** {{:https://en.wikipedia.org/wiki/Incomplete_gamma_function}
Lower incomplete gamma function}
@raise Failure when the calculation doesn't converge.
*)
val boys_function : maxm:int -> float -> float array
(** {{:https://link.springer.com/article/10.1007/s10910-005-9023-3}
Generalized Boys function}.
@param maxm Maximum total angular momentum.
*)
(** {1 Extension of the Array module} *)
val array_sum : float array -> float
(** Returns the sum of all the elements of the array *)
val array_product : float array -> float
(** Returns the product of all the elements of the array *)
(** {1 Linear algebra } *)
val diagonalize_symm : Lacaml.D.mat -> Lacaml.D.mat * Lacaml.D.vec
(** Diagonalize a symmetric matrix. Returns the eigenvectors and the eigenvalues. *)
val xt_o_x : o:Lacaml.D.mat -> x:Lacaml.D.mat -> Lacaml.D.mat
(** Computes X{^T}.O.X *)