10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2025-01-05 02:48:37 +01:00

Cleaned localization

This commit is contained in:
Anthony Scemama 2024-02-28 11:17:20 +01:00
parent 50698ce0ff
commit 7eba47e0a4
6 changed files with 95 additions and 772 deletions

View File

@ -1,4 +1,4 @@
(* [[file:~/QCaml/mo/localization.org::*Type][Type:3]] *) (** Types *)
open Linear_algebra open Linear_algebra
type localization_kind = type localization_kind =
@ -28,12 +28,10 @@ type t =
} }
open Common open Common
(* Type:3 ends here *)
(* Edmiston-Rudenberg *)
(* [[file:~/QCaml/mo/localization.org::*Edmiston-Rudenberg][Edmiston-Rudenberg:1]] *) (** Edmiston-Rudenberg *)
let kappa_edmiston in_basis m_C = let kappa_edmiston in_basis m_C =
let ao_basis = let ao_basis =
Basis.simulation in_basis Basis.simulation in_basis
@ -133,12 +131,10 @@ let kappa_edmiston in_basis m_C =
Matrix.init_cols n_mo n_mo ( fun i j -> if i<=j then f i j else -. (f j i) ), Matrix.init_cols n_mo n_mo ( fun i j -> if i<=j then f i j else -. (f j i) ),
Vector.sum (Vector.of_bigarray_inplace v_d) Vector.sum (Vector.of_bigarray_inplace v_d)
) )
(* Edmiston-Rudenberg:1 ends here *)
(* Boys *)
(* [[file:~/QCaml/mo/localization.org::*Boys][Boys:1]] *) (** Boys *)
let kappa_boys in_basis = let kappa_boys in_basis =
let ao_basis = let ao_basis =
Basis.simulation in_basis Basis.simulation in_basis
@ -201,15 +197,11 @@ let kappa_boys in_basis =
r2 (phi_x_phi%:(i,i)) (phi_y_phi%:(i,i)) (phi_z_phi%:(i,i))) r2 (phi_x_phi%:(i,i)) (phi_y_phi%:(i,i)) (phi_z_phi%:(i,i)))
|> Vector.sum |> Vector.sum
) )
(* Boys:1 ends here *)
(* | ~kappa~ | Returns the $\kappa$ antisymmetric matrix used for the rotation matrix and the value of the localization function | (** Access *)
* | ~make~ | Performs the orbital localization | *)
(* [[file:~/QCaml/mo/localization.org::*Access][Access:2]] *)
let kind t = t.kind let kind t = t.kind
let simulation t = Basis.simulation t.mo_basis let simulation t = Basis.simulation t.mo_basis
let selected_mos t = t.selected_mos let selected_mos t = t.selected_mos
@ -336,9 +328,10 @@ let to_basis t =
|> List.iteri (fun i j -> mo_coef_array.(j-1) <- new_mos.(i)) ; |> List.iteri (fun i j -> mo_coef_array.(j-1) <- new_mos.(i)) ;
let mo_coef = Matrix.of_col_vecs mo_coef_array in let mo_coef = Matrix.of_col_vecs mo_coef_array in
Basis.make ~simulation ~mo_type:(Localized "Boys") ~mo_occupation ~mo_coef () Basis.make ~simulation ~mo_type:(Localized "Boys") ~mo_occupation ~mo_coef ()
(* Access:2 ends here *)
(* [[file:~/QCaml/mo/localization.org::*Printers][Printers:2]] *)
(** Printers *)
let linewidth = 60 let linewidth = 60
let pp_iterations ppf t = let pp_iterations ppf t =
@ -372,4 +365,3 @@ let pp ppf t =
) "MO Localization"; ) "MO Localization";
Format.fprintf ppf "@[%s@]@.@." (String.make 70 '='); Format.fprintf ppf "@[%s@]@.@." (String.make 70 '=');
Format.fprintf ppf "@[%a@]@." pp_iterations t; Format.fprintf ppf "@[%a@]@." pp_iterations t;
(* Printers:2 ends here *)

View File

@ -1,8 +1,5 @@
(* Type (** Molecular orbital localization *)
*
* #+NAME: types *)
(* [[file:~/QCaml/mo/localization.org::types][types]] *)
open Linear_algebra open Linear_algebra
type localization_kind = type localization_kind =
@ -12,26 +9,31 @@ type localization_kind =
type mo = Mo_dim.t type mo = Mo_dim.t
type ao = Ao.Ao_dim.t type ao = Ao.Ao_dim.t
type loc type loc
(* types ends here *)
(* [[file:~/QCaml/mo/localization.org::*Type][Type:2]] *)
type localization_data type localization_data
type t type t
(* Type:2 ends here *)
(* Access *)
(* [[file:~/QCaml/mo/localization.org::*Access][Access:1]] *) (** Access *)
val kind : t -> localization_kind val kind : t -> localization_kind
(** Returns the kind of localized MOs *)
val simulation : t -> Simulation.t val simulation : t -> Simulation.t
(** Returns the simulation environment in which the MOs are localized *)
val selected_mos : t -> int list val selected_mos : t -> int list
(** List of indices of the orbitals involved in the localization *)
val kappa : val kappa :
kind:localization_kind -> kind:localization_kind ->
Basis.t -> Basis.t ->
( ao,loc) Matrix.t -> ( ao,loc) Matrix.t ->
(loc,loc) Matrix.t * float (loc,loc) Matrix.t * float
(** Returns the $\kappa$ antisymmetric matrix used for the rotation matrix and
* the value of the localization function
*)
val make : val make :
kind:localization_kind -> kind:localization_kind ->
@ -40,13 +42,11 @@ val make :
Basis.t -> Basis.t ->
int list -> int list ->
t t
(** Performs the orbital localization *)
val to_basis : t -> Basis.t val to_basis : t -> Basis.t
(* Access:1 ends here *)
(* Printers *)
(* [[file:~/QCaml/mo/localization.org::*Printers][Printers:1]] *) (** Printers *)
val pp : Format.formatter -> t -> unit val pp : Format.formatter -> t -> unit
(* Printers:1 ends here *)

View File

@ -1,520 +0,0 @@
#+begin_src elisp tangle: no :results none :exports none
(setq pwd (file-name-directory buffer-file-name))
(setq name (file-name-nondirectory (substring buffer-file-name 0 -4)))
(setq lib (concat pwd "lib/"))
(setq testdir (concat pwd "test/"))
(setq mli (concat lib name ".mli"))
(setq ml (concat lib name ".ml"))
(setq test-ml (concat testdir name ".ml"))
(org-babel-tangle)
#+end_src
* Orbital localization
:PROPERTIES:
:header-args: :noweb yes :comments both
:END:
Molecular orbital localization function.
Boys:
Edmiston-Rudenberg:
** Type
#+NAME: types
#+begin_src ocaml :tangle (eval mli)
open Linear_algebra
type localization_kind =
| Edmiston
| Boys
type mo = Mo_dim.t
type ao = Ao.Ao_dim.t
type loc
#+end_src
#+begin_src ocaml :tangle (eval mli)
type localization_data
type t
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
<<types>>
type localization_data =
{
coefficients : (ao, loc) Matrix.t ;
kappa : (loc, loc) Matrix.t ;
scaling : float ;
loc_value : float ;
convergence : float ;
iteration : int ;
}
type t =
{
kind : localization_kind ;
mo_basis : Basis.t ;
data : localization_data option lazy_t array ;
selected_mos : int list ;
}
open Common
#+end_src
** Edmiston-Rudenberg
#+begin_src ocaml :tangle (eval ml) :exports none
let kappa_edmiston in_basis m_C =
let ao_basis =
Basis.simulation in_basis
|> Simulation.ao_basis
in
let ee_ints = Ao.Basis.ee_ints ao_basis in
let n_ao = Ao.Basis.size ao_basis in
let n_mo = Matrix.dim2 m_C in
(* Temp arrays for integral transformation *)
let m_pqr =
Bigarray.(Array3.create Float64 fortran_layout n_ao n_ao n_ao)
in
let m_qr_i = Matrix.create (n_ao*n_ao) n_mo in
let m_ri_j = Matrix.create (n_ao*n_mo) n_mo in
let m_ij_k = Matrix.create (n_mo*n_mo) n_mo in
let m_a12 = Bigarray.(Array2.create Float64 fortran_layout n_mo n_mo) in
let m_b12 = Bigarray.(Array2.create Float64 fortran_layout n_mo n_mo) in
Bigarray.Array2.fill m_b12 0.;
Bigarray.Array2.fill m_a12 0.;
let v_d =
Vector.init n_mo (fun _ -> 0.)
|> Vector.to_bigarray_inplace
in
Array.iter (fun s ->
Array.iter (fun r ->
Array.iter (fun q ->
Array.iter (fun p ->
m_pqr.{p,q,r} <- Four_idx_storage.get_phys ee_ints p q r s
) (Util.array_range 1 n_ao)
) (Util.array_range 1 n_ao)
) (Util.array_range 1 n_ao);
let m_p_qr =
Bigarray.reshape (Bigarray.genarray_of_array3 m_pqr) [| n_ao ; n_ao*n_ao |]
|> Bigarray.array2_of_genarray
|> Matrix.of_bigarray_inplace
in
(* (qr,i) = <i r|q s> = \sum_p <p r | q s> C_{pi} *)
Matrix.gemm_tn_inplace ~c:m_qr_i m_p_qr m_C;
let m_q_ri =
let x = Matrix.to_bigarray_inplace m_qr_i |> Bigarray.genarray_of_array2 in
Bigarray.reshape_2 x n_ao (n_ao*n_mo) |> Matrix.of_bigarray_inplace
in
(* (ri,j) = <i r | j s> = \sum_q <i r | q s> C_{qj} *)
Matrix.gemm_tn_inplace ~c:m_ri_j m_q_ri m_C;
let m_r_ij =
let x = Matrix.to_bigarray_inplace m_ri_j |> Bigarray.genarray_of_array2 in
Bigarray.reshape_2 x n_ao (n_mo*n_mo) |> Matrix.of_bigarray_inplace
in
(* (ij,k) = <i k | j s> = \sum_r <i r | j s> C_{rk} *)
Matrix.gemm_tn_inplace ~c:m_ij_k m_r_ij m_C;
let m_ijk =
let x = Matrix.to_bigarray_inplace m_ij_k |> Bigarray.genarray_of_array2 in
Bigarray.reshape x [| n_mo ; n_mo ; n_mo |]
|> Bigarray.array3_of_genarray
in
let m_Cx = Matrix.to_bigarray_inplace m_C in
Array.iter (fun j ->
Array.iter (fun i ->
m_b12.{i,j} <- m_b12.{i,j} +. m_Cx.{s,j} *. (m_ijk.{i,i,i} -. m_ijk.{j,i,j});
m_a12.{i,j} <- m_a12.{i,j} +. m_ijk.{i,i,j} *. m_Cx.{s,j} -.
0.25 *. ( (m_ijk.{i,i,i} -. m_ijk.{j,i,j}) *. m_Cx.{s,i} +.
(m_ijk.{j,j,j} -. m_ijk.{i,j,i}) *. m_Cx.{s,j})
) (Util.array_range 1 n_mo);
v_d.{j} <- v_d.{j} +. m_ijk.{j,j,j} *. m_Cx.{s,j}
) (Util.array_range 1 n_mo)
) (Util.array_range 1 n_ao);
let f i j =
if i=j then
0.
else
begin
let x = 1./. sqrt (m_b12.{i,j} *. m_b12.{i,j} +. m_a12.{i,j} *. m_a12.{i,j} ) in
if asin (m_b12.{i,j} /. x) > 0. then
0.25 *. acos( -. m_a12.{i,j} *. x)
else
-. 0.25 *. acos( -. m_a12.{i,j} *. x )
end
in
(
Matrix.init_cols n_mo n_mo ( fun i j -> if i<=j then f i j else -. (f j i) ),
Vector.sum (Vector.of_bigarray_inplace v_d)
)
#+end_src
** Boys
#+begin_src ocaml :tangle (eval ml) :exports none
let kappa_boys in_basis =
let ao_basis =
Basis.simulation in_basis
|> Simulation.ao_basis
in
let multipole = Ao.Basis.multipole ao_basis in
fun m_C ->
let n_mo = Matrix.dim2 m_C in
let phi_x_phi = Matrix.xt_o_x ~x:m_C ~o:(multipole "x") in
let phi_y_phi = Matrix.xt_o_x ~x:m_C ~o:(multipole "y") in
let phi_z_phi = Matrix.xt_o_x ~x:m_C ~o:(multipole "z") in
let m_b12 =
let g x i j =
let x_ii = x%:(i,i) in
let x_jj = x%:(j,j) in
let x_ij = x%:(i,j) in
(x_ii -. x_jj) *. x_ij
in
Matrix.init_cols n_mo n_mo (fun i j ->
let x =
(g phi_x_phi i j) +. (g phi_y_phi i j) +. (g phi_z_phi i j)
in
if (abs_float x > 1.e-15) then x else 0.
)
in
let m_a12 =
let g x i j =
let x_ii = x%:(i,i) in
let x_jj = x%:(j,j) in
let x_ij = x%:(i,j) in
let y = x_ii -. x_jj in
(x_ij *. x_ij) -. 0.25 *. y *. y
in
Matrix.init_cols n_mo n_mo (fun i j ->
let x =
(g phi_x_phi i j) +. (g phi_y_phi i j) +. (g phi_z_phi i j)
in
if (abs_float x > 1.e-15) then x else 0.
)
in
let f i j =
let pi = Constants.pi in
if i=j then
0.
else
let x = atan2 (m_b12%:(i,j)) (m_a12%:(i,j)) in
if x >= 0. then
0.25 *. (pi -. x)
else
-. 0.25 *. ( pi +. x)
in
(
Matrix.init_cols n_mo n_mo ( fun i j -> if i>j then f i j else -. (f j i) ),
let r2 x y z = x*.x +. y*.y +. z*.z in
Vector.init n_mo ( fun i ->
r2 (phi_x_phi%:(i,i)) (phi_y_phi%:(i,i)) (phi_z_phi%:(i,i)))
|> Vector.sum
)
#+end_src
** Access
#+begin_src ocaml :tangle (eval mli)
val kind : t -> localization_kind
val simulation : t -> Simulation.t
val selected_mos : t -> int list
val kappa :
kind:localization_kind ->
Basis.t ->
( ao,loc) Matrix.t ->
(loc,loc) Matrix.t * float
val make :
kind:localization_kind ->
?max_iter:int ->
?convergence:float ->
Basis.t ->
int list ->
t
val to_basis : t -> Basis.t
#+end_src
| ~kappa~ | Returns the $\kappa$ antisymmetric matrix used for the rotation matrix and the value of the localization function |
| ~make~ | Performs the orbital localization |
#+begin_src ocaml :tangle (eval ml) :exports none
let kind t = t.kind
let simulation t = Basis.simulation t.mo_basis
let selected_mos t = t.selected_mos
let kappa ~kind =
match kind with
| Edmiston -> kappa_edmiston
| Boys -> kappa_boys
let n_iterations t =
Array.fold_left (fun accu x ->
match Lazy.force x with
| Some _ -> accu + 1
| None -> accu
) 0 t.data
let last_iteration t =
Util.of_some @@ Lazy.force t.data.(n_iterations t - 1)
(*
let ao_basis t = Simulation.ao_basis (simulation t)
,*)
let make ~kind ?(max_iter=500) ?(convergence=1.e-6) mo_basis selected_mos =
let kappa_loc = kappa ~kind mo_basis in
let mo_array = Matrix.to_col_vecs (Basis.mo_coef mo_basis) in
let mos_vec_list = List.map (fun i -> mo_array.(i-1)) selected_mos in
let x: (ao,loc) Matrix.t =
Matrix.of_col_vecs_list mos_vec_list
in
let next_coef kappa x =
let r = Matrix.exponential_antisymmetric kappa in
let m_C = Matrix.gemm_nt x r in
m_C
in
let data_initial =
let iteration = 0
and scaling = 0.1
in
let kappa, loc_value = kappa_loc x in
let convergence = abs_float (Matrix.amax kappa) in
let kappa = Matrix.scale scaling kappa in
let coefficients = next_coef kappa x in
{ coefficients ; kappa ; scaling ; convergence ; loc_value ; iteration }
in
let iteration data =
let iteration = data.iteration+1 in
let new_kappa, new_loc_value = kappa_loc data.coefficients in
let new_convergence = abs_float (Matrix.amax new_kappa) in
let accept =
new_loc_value >= data.loc_value*.0.98
in
if accept then
let coefficients = next_coef new_kappa data.coefficients in
let scaling = min 1. (data.scaling *. 1.1) in
let kappa = Matrix.scale scaling new_kappa in
let convergence = new_convergence in
let loc_value = new_loc_value in
{ coefficients ; kappa ; scaling ; convergence ; loc_value ; iteration }
else
let scaling =
data.scaling *. 0.5
in
{ data with scaling ; iteration }
in
let array_data =
let storage =
Array.make max_iter None
in
let rec loop = function
| 0 -> Some (iteration data_initial)
| n -> begin
match storage.(n) with
| Some result -> Some result
| None -> begin
let data = loop (n-1) in
match data with
| None -> None
| Some data -> begin
(* Check convergence *)
let converged =
data.convergence < convergence
in
if converged then
None
else
begin
storage.(n-1) <- Some data ;
storage.(n) <- Some (iteration data);
storage.(n)
end
end
end
end
in
Array.init max_iter (fun i -> lazy (loop i))
in
{ kind ; mo_basis ; data = array_data ; selected_mos }
let to_basis t =
let mo_basis = t.mo_basis in
let simulation = Basis.simulation mo_basis in
let mo_occupation = Basis.mo_occupation mo_basis in
let data = last_iteration t in
let mo_coef_array = Matrix.to_col_vecs (Basis.mo_coef mo_basis) in
let new_mos =
Matrix.to_col_vecs data.coefficients
in
selected_mos t
|> List.iteri (fun i j -> mo_coef_array.(j-1) <- new_mos.(i)) ;
let mo_coef = Matrix.of_col_vecs mo_coef_array in
Basis.make ~simulation ~mo_type:(Localized "Boys") ~mo_occupation ~mo_coef ()
#+end_src
** Printers
#+begin_src ocaml :tangle (eval mli)
val pp : Format.formatter -> t -> unit
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
let linewidth = 60
let pp_iterations ppf t =
let line = (String.make linewidth '-') in
Format.fprintf ppf "@[%4s%s@]@." "" line;
Format.fprintf ppf "@[%4s@[%5s@]@,@[%16s@]@,@[%16s@]@,@[%11s@]@]@."
"" "#" "Localization " "Convergence" "Scaling";
Format.fprintf ppf "@[%4s%s@]@." "" line;
Array.iter (fun data ->
let data = Lazy.force data in
match data with
| None -> ()
| Some data ->
let loc = data.loc_value in
let conv = data.convergence in
let scaling = data.scaling in
let iteration = data.iteration in
begin
Format.fprintf ppf "@[%4s@[%5d@]@,@[%16.8f@]@,@[%16.4e@]@,@[%11.4f@]@]@." ""
iteration loc conv scaling ;
end
) t.data;
Format.fprintf ppf "@[%4s%s@]@." "" line
let pp ppf t =
Format.fprintf ppf "@.@[%s@]@." (String.make 70 '=');
Format.fprintf ppf "@[%34s %-34s@]@." (match t.kind with
| Boys -> "Boys"
| Edmiston -> "Edmiston-Ruedenberg"
) "MO Localization";
Format.fprintf ppf "@[%s@]@.@." (String.make 70 '=');
Format.fprintf ppf "@[%a@]@." pp_iterations t;
#+end_src
** Tests
#+begin_src ocaml :tangle (eval test-ml) :exports none
let test_localization =
let nuclei =
Particles.Nuclei.of_xyz_string
" 10
Hydrogen chain, d=1.8 Angstrom
H -4.286335 0.000000 0.000000
H -3.333816 0.000000 0.000000
H -2.381297 0.000000 0.000000
H -1.428778 0.000000 0.000000
H -0.476259 0.000000 0.000000
H 0.476259 0.000000 0.000000
H 1.428778 0.000000 0.000000
H 2.381297 0.000000 0.000000
H 3.333816 0.000000 0.000000
H 4.286335 0.000000 0.000000
" in
let basis_file = "/home/scemama/qp2/data/basis/sto-6g" in
let ao_basis =
Ao.Basis.of_nuclei_and_basis_filename ~nuclei basis_file
in
let charge = 0 in
let multiplicity = 1 in
let simulation =
Simulation.make ~charge ~multiplicity ~nuclei ao_basis
in
let hf =
Mo.Hartree_fock.make ~guess:`Hcore simulation
in
let mo_basis =
Mo.Basis.of_hartree_fock hf
in
let localized_mo_basis =
Mo.Localization.make
~kind:Mo.Localization.Boys
mo_basis
[4;5;6;7;8]
|> Mo.Localization.to_basis
in
Format.printf "%a" (Mo.Basis.pp ~start:1 ~finish:10) localized_mo_basis
(*
open Common
open Alcotest
let wd = Qcaml.root ^ Filename.dir_sep ^ "test" in
let test_xyz molecule length repulsion charge core =
let xyz = Nuclei.of_xyz_file (wd^Filename.dir_sep^molecule^".xyz") in
check int "length" length (Array.length xyz);
check (float 1.e-4) "repulsion" repulsion (Nuclei.repulsion xyz);
check int "charge" charge (Charge.to_int @@ Nuclei.charge xyz);
check int "small_core" core (Nuclei.small_core xyz);
()
let tests = [
"caffeine", `Quick, (fun () -> test_xyz "caffeine" 24 917.0684 102 28);
"water", `Quick, (fun () -> test_xyz "water" 3 9.19497 10 2);
]
,*)
#+end_src

View File

@ -1,10 +1,12 @@
(* [[file:../simulation.org::*Simulation][Simulation:2]] *) (** Simulation *)
open Common open Common
open Particles open Particles
open Operators open Operators
(* Simulation:2 ends here *)
(* [[file:../simulation.org::*Type][Type:2]] *)
(** Type *)
type t = { type t = {
charge : Charge.t; charge : Charge.t;
electrons : Electrons.t; electrons : Electrons.t;
@ -12,36 +14,20 @@ type t = {
ao_basis : Ao.Basis.t; ao_basis : Ao.Basis.t;
operators : Operator.t list; operators : Operator.t list;
} }
(* Type:2 ends here *)
(** Access *)
(* | ~nuclei~ | Nuclear coordinates used in the smiulation |
* | ~charge~ | Total charge (electrons + nuclei) |
* | ~electrons~ | Electrons used in the simulation |
* | ~ao_basis~ | Atomic basis set |
* | ~nuclear_repulsion~ | Nuclear repulsion energy |
* | ~operators~ | List of extra operators (range-separation, f12, etc) | *)
(* [[file:../simulation.org::*Access][Access:2]] *)
let nuclei t = t.nuclei let nuclei t = t.nuclei
let charge t = t.charge let charge t = t.charge
let electrons t = t.electrons let electrons t = t.electrons
let ao_basis t = t.ao_basis let ao_basis t = t.ao_basis
let nuclear_repulsion t = Nuclei.repulsion @@ nuclei t let nuclear_repulsion t = Nuclei.repulsion @@ nuclei t
let operators t = t.operators let operators t = t.operators
(* Access:2 ends here *)
(** Creation *)
(* Defaults:
* - multiplicity : ~1~
* - charge : ~0~
* - operators : ~[]~ *)
(* [[file:../simulation.org::*Creation][Creation:2]] *)
let make let make
?(multiplicity=1) ?(multiplicity=1)
?(charge=0) ?(charge=0)
@ -63,13 +49,14 @@ let make
in in
{ charge ; nuclei ; electrons ; ao_basis ; operators} { charge ; nuclei ; electrons ; ao_basis ; operators}
(* Creation:2 ends here *)
(* [[file:../simulation.org::*Printers][Printers:2]] *)
(** Printers *)
let pp ppf t = let pp ppf t =
let formula = Nuclei.formula t.nuclei in let formula = Nuclei.formula t.nuclei in
let n_aos = Ao.Basis.size t.ao_basis in let n_aos = Ao.Basis.size t.ao_basis in
let n_ops = List.length t.operators in let n_ops = List.length t.operators in
Format.fprintf ppf "@[@[%s@], @[%a@], @[%d AOs@], @[%d operators@]@]" Format.fprintf ppf "@[@[%s@], @[%a@], @[%d AOs@], @[%d operators@]@]"
formula Electrons.pp t.electrons n_aos n_ops formula Electrons.pp t.electrons n_aos n_ops
(* Printers:2 ends here *)

View File

@ -1,50 +1,45 @@
(* Simulation (** Contains the state of the simulation. *)
* :PROPERTIES:
* :header-args: :noweb yes :comments both
* :END:
*
* Contains the state of the simulation.
*
* #+NAME: open *)
(* [[file:../simulation.org::open][open]] *)
open Common open Common
open Particles open Particles
open Operators open Operators
(* open ends here *)
(* Type
*
* #+NAME: types *)
(* [[file:../simulation.org::types][types]] *)
type t type t
(* types ends here *)
(* Access *)
(* [[file:../simulation.org::*Access][Access:1]] *) (** Access *)
val nuclei : t -> Nuclei.t val nuclei : t -> Nuclei.t
(** Nuclear coordinates used in the smiulation *)
val charge : t -> Charge.t val charge : t -> Charge.t
(** Total charge (electrons + nuclei) *)
val electrons : t -> Electrons.t val electrons : t -> Electrons.t
(** Electrons used in the simulation *)
val ao_basis : t -> Ao.Basis.t val ao_basis : t -> Ao.Basis.t
(** Atomic basis set *)
val nuclear_repulsion : t -> float val nuclear_repulsion : t -> float
(** Nuclear repulsion energy *)
val operators : t -> Operator.t list val operators : t -> Operator.t list
(* Access:1 ends here *) (** List of extra operators (range-separation, f12, etc) *)
(* Creation *)
(* [[file:../simulation.org::*Creation][Creation:1]] *) (** Creation *)
val make : ?multiplicity:int -> ?charge:int -> val make : ?multiplicity:int -> ?charge:int ->
?operators:Operator.t list-> nuclei:Nuclei.t -> ?operators:Operator.t list-> nuclei:Nuclei.t ->
Ao.Basis.t -> t Ao.Basis.t -> t
(* Creation:1 ends here *) (** Defaults:
* - multiplicity : ~1~
(* Printers *) * - charge : ~0~
* - operators : ~[]~
*)
(* [[file:../simulation.org::*Printers][Printers:1]] *) (** Printers *)
val pp : Format.formatter -> t -> unit val pp : Format.formatter -> t -> unit
(* Printers:1 ends here *)

View File

@ -1,131 +0,0 @@
#+begin_src elisp tangle: no :results none :exports none
(setq pwd (file-name-directory buffer-file-name))
(setq name (file-name-nondirectory (substring buffer-file-name 0 -4)))
(setq lib (concat pwd "lib/"))
(setq testdir (concat pwd "test/"))
(setq mli (concat lib name ".mli"))
(setq ml (concat lib name ".ml"))
(setq test-ml (concat testdir name ".ml"))
(org-babel-tangle)
#+end_src
* Simulation
:PROPERTIES:
:header-args: :noweb yes :comments both
:END:
Contains the state of the simulation.
#+NAME: open
#+begin_src ocaml :tangle (eval mli)
open Common
open Particles
open Operators
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
<<open>>
#+end_src
** Type
#+NAME: types
#+begin_src ocaml :tangle (eval mli)
type t
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
type t = {
charge : Charge.t;
electrons : Electrons.t;
nuclei : Nuclei.t;
ao_basis : Ao.Basis.t;
operators : Operator.t list;
}
#+end_src
** Access
#+begin_src ocaml :tangle (eval mli)
val nuclei : t -> Nuclei.t
val charge : t -> Charge.t
val electrons : t -> Electrons.t
val ao_basis : t -> Ao.Basis.t
val nuclear_repulsion : t -> float
val operators : t -> Operator.t list
#+end_src
| ~nuclei~ | Nuclear coordinates used in the smiulation |
| ~charge~ | Total charge (electrons + nuclei) |
| ~electrons~ | Electrons used in the simulation |
| ~ao_basis~ | Atomic basis set |
| ~nuclear_repulsion~ | Nuclear repulsion energy |
| ~operators~ | List of extra operators (range-separation, f12, etc) |
#+begin_src ocaml :tangle (eval ml) :exports none
let nuclei t = t.nuclei
let charge t = t.charge
let electrons t = t.electrons
let ao_basis t = t.ao_basis
let nuclear_repulsion t = Nuclei.repulsion @@ nuclei t
let operators t = t.operators
#+end_src
** Creation
#+begin_src ocaml :tangle (eval mli)
val make : ?multiplicity:int -> ?charge:int ->
?operators:Operator.t list-> nuclei:Nuclei.t ->
Ao.Basis.t -> t
#+end_src
Defaults:
- multiplicity : ~1~
- charge : ~0~
- operators : ~[]~
#+begin_src ocaml :tangle (eval ml) :exports none
let make
?(multiplicity=1)
?(charge=0)
?(operators=[])
~nuclei
ao_basis
=
(* Tune Garbage Collector *)
let gc = Gc.get () in
Gc.set { gc with space_overhead = 1000 };
let electrons =
Electrons.of_atoms ~multiplicity ~charge nuclei
in
let charge =
Charge.(Nuclei.charge nuclei + Electrons.charge electrons)
in
{ charge ; nuclei ; electrons ; ao_basis ; operators}
#+end_src
** Printers
#+begin_src ocaml :tangle (eval mli)
val pp : Format.formatter -> t -> unit
#+end_src
#+begin_src ocaml :tangle (eval ml) :exports none
let pp ppf t =
let formula = Nuclei.formula t.nuclei in
let n_aos = Ao.Basis.size t.ao_basis in
let n_ops = List.length t.operators in
Format.fprintf ppf "@[@[%s@], @[%a@], @[%d AOs@], @[%d operators@]@]"
formula Electrons.pp t.electrons n_aos n_ops
#+end_src
#+RESULTS:
: Line 2, characters 16-30:
: 2 | let formula = Nuclei.formula t.nuclei in
: ^^^^^^^^^^^^^^
: Error: Unbound module Nuclei