10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-12-22 04:13:33 +01:00

Optimized vectorized routines

This commit is contained in:
Anthony Scemama 2018-01-31 15:05:01 +01:00
parent 148052025c
commit 77bdf8ee41

View File

@ -3,9 +3,15 @@ open Util
let cutoff2 = cutoff *. cutoff
exception NullQuartet
exception Found
let at_least_one_valid arr =
try
Array.fold_left (fun _ x -> if (abs_float x > cutoff) then raise Found else false ) false arr
with Found -> true
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
let hvrr_two_e_vector m (angMom_a, angMom_b, angMom_c, angMom_d)
let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
(totAngMom_a, totAngMom_b, totAngMom_c, totAngMom_d)
(maxm, zero_m_array)
(expo_b, expo_d)
@ -30,6 +36,7 @@ let hvrr_two_e_vector m (angMom_a, angMom_b, angMom_c, angMom_d)
| 1 -> let i = if angMom_a.(0) = 1 then 0 else if angMom_a.(1) = 1 then 1 else 2
in
let f = expo_b *. (Coordinate.coord center_ab i) in
if (abs_float f < cutoff) then empty else
Array.mapi (fun k c -> c *. expo_inv_p *.
( (Coordinate.coord center_pq.(k) i) *. zero_m_array.(k).(m+1)
-. f *. zero_m_array.(k).(m) ) ) coef_prod
@ -70,7 +77,10 @@ let hvrr_two_e_vector m (angMom_a, angMom_b, angMom_c, angMom_d)
in
if (abs_float f < cutoff) then empty else
let v1 = vrr0_v m amm (totAngMom_a-2)
and v2 = vrr0_v (m+1) amm (totAngMom_a-2)
in
let v2 =
if (abs_float (f *. expo_inv_p)) < cutoff then empty else
vrr0_v (m+1) amm (totAngMom_a-2)
in
Array.mapi (fun k _ -> p1.(k) +.
f *. (v1.(k) +. v2.(k) *. expo_inv_p ) ) coef_prod
@ -111,43 +121,62 @@ let hvrr_two_e_vector m (angMom_a, angMom_b, angMom_c, angMom_d)
if cm.(xyz) < 0 then
empty
else
let f1 =
Array.mapi (fun k _ ->
expo_d.(k) *. expo_inv_q.(k) *. (Coordinate.coord center_cd.(k) xyz) ) expo_inv_q
in
let f2 =
Array.mapi (fun k _ ->
expo_inv_q.(k) *. (Coordinate.coord center_pq.(k) xyz) ) expo_inv_q
in
let v1 =
vrr_v m angMom_a cm totAngMom_a (totAngMom_c-1)
if (at_least_one_valid f1) then
vrr_v m angMom_a cm totAngMom_a (totAngMom_c-1)
else empty
and v2 =
vrr_v (m+1) angMom_a cm totAngMom_a (totAngMom_c-1)
if (at_least_one_valid f2) then
vrr_v (m+1) angMom_a cm totAngMom_a (totAngMom_c-1)
else empty
in
let p1 =
Array.mapi (fun k _ ->
-. v1.(k) *. expo_d.(k) *. expo_inv_q.(k) *. (Coordinate.coord center_cd.(k) xyz)
-. v2.(k) *. (expo_inv_q.(k) *. (Coordinate.coord center_pq.(k) xyz))
) coef_prod
Array.mapi (fun k _ -> -. v1.(k) *. f1.(k) -. v2.(k) *. f2.(k)) coef_prod
in
let p2 =
if cmm.(xyz) < 0 then p1 else
let v1 =
vrr_v m angMom_a cmm totAngMom_a (totAngMom_c-2)
and v2 =
vrr_v (m+1) angMom_a cmm totAngMom_a (totAngMom_c-2)
and fcm =
let fcm =
(float_of_int cm.(xyz)) *. 0.5
in
Array.mapi (fun k _ -> p1.(k) +. fcm *. expo_inv_q.(k)
*. (v1.(k) +. expo_inv_q.(k) *. v2.(k))
) coef_prod
let f1 =
Array.mapi (fun k _ -> fcm *. expo_inv_q.(k) ) coef_prod
and f2 =
Array.mapi (fun k _ -> f1.(k) *. expo_inv_q.(k) ) coef_prod
in
let v1 =
if (at_least_one_valid f1) then
vrr_v m angMom_a cmm totAngMom_a (totAngMom_c-2)
else empty
in
let v2 =
if (at_least_one_valid f2) then
vrr_v (m+1) angMom_a cmm totAngMom_a (totAngMom_c-2)
else empty
in
Array.mapi (fun k _ -> p1.(k) +. f1.(k) *. v1.(k) +. f2.(k) *. v2.(k)) coef_prod
in
if (am.(xyz) < 0) || (cm.(xyz) < 0) then p2 else
let fa =
(float_of_int angMom_a.(xyz)) *. expo_inv_p *. 0.5
in
(*
if (abs_float fa < cutoff) then empty else
*)
let f1 =
Array.mapi (fun k _ -> fa *. expo_inv_q.(k) ) coef_prod
in
if (at_least_one_valid f1) then
let v =
vrr_v (m+1) am cm (totAngMom_a-1) (totAngMom_c-1)
in
Array.mapi (fun k _ ->
p2.(k) -. fa *. expo_inv_q.(k) *. v.(k)
) coef_prod
Array.mapi (fun k _ -> p2.(k) -. f1.(k) *. v.(k)) coef_prod
else p2
)
in
if not found then
@ -158,27 +187,27 @@ let hvrr_two_e_vector m (angMom_a, angMom_b, angMom_c, angMom_d)
(** Horizontal recurrence relations *)
and hrr0_v m angMom_a angMom_b angMom_c
and hrr0_v angMom_a angMom_b angMom_c
totAngMom_a totAngMom_b totAngMom_c =
match totAngMom_b with
| 0 ->
begin
match (totAngMom_a, totAngMom_c) with
| (0,0) -> Array.mapi (fun k c -> c *. zero_m_array.(k).(m)) coef_prod
| (_,0) -> vrr0_v m angMom_a totAngMom_a
| (_,_) -> vrr_v m angMom_a angMom_c totAngMom_a totAngMom_c
| (0,0) -> Array.mapi (fun k c -> c *. zero_m_array.(k).(0)) coef_prod
| (_,0) -> vrr0_v 0 angMom_a totAngMom_a
| (_,_) -> vrr_v 0 angMom_a angMom_c totAngMom_a totAngMom_c
end
| 1 -> let xyz = if angMom_b.(0) = 1 then 0 else if angMom_b.(1) = 1 then 1 else 2 in
let ap = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |] in
ap.(xyz) <- ap.(xyz) + 1;
let f = Coordinate.coord center_ab xyz in
let v1 =
vrr_v m ap angMom_c (totAngMom_a+1) totAngMom_c
vrr_v 0 ap angMom_c (totAngMom_a+1) totAngMom_c
in
if (abs_float f < cutoff) then v1 else
let v2 =
vrr_v m angMom_a angMom_c totAngMom_a totAngMom_c
vrr_v 0 angMom_a angMom_c totAngMom_a totAngMom_c
in
Array.map2 (fun v1 v2 -> v1 +. v2 *. f) v1 v2
| _ ->
@ -194,20 +223,20 @@ let hvrr_two_e_vector m (angMom_a, angMom_b, angMom_c, angMom_d)
bm.(xyz) <- bm.(xyz) - 1;
if (bm.(xyz) < 0) then empty else
let h1 =
hrr0_v m ap bm angMom_c (totAngMom_a+1) (totAngMom_b-1) totAngMom_c
hrr0_v ap bm angMom_c (totAngMom_a+1) (totAngMom_b-1) totAngMom_c
in
let f = (Coordinate.coord center_ab xyz) in
if (abs_float f < cutoff) then h1 else
let h2 =
hrr0_v m angMom_a bm angMom_c totAngMom_a (totAngMom_b-1) totAngMom_c
hrr0_v angMom_a bm angMom_c totAngMom_a (totAngMom_b-1) totAngMom_c
in Array.map2 (fun h1 h2 -> h1 +. h2 *. f) h1 h2
and hrr_v m angMom_a angMom_b angMom_c angMom_d
and hrr_v angMom_a angMom_b angMom_c angMom_d
totAngMom_a totAngMom_b totAngMom_c totAngMom_d =
match (totAngMom_b, totAngMom_d) with
| (0,0) -> vrr_v m angMom_a angMom_c totAngMom_a totAngMom_c
| (_,0) -> hrr0_v m angMom_a angMom_b angMom_c totAngMom_a totAngMom_b totAngMom_c
| (0,0) -> vrr_v 0 angMom_a angMom_c totAngMom_a totAngMom_c
| (_,0) -> hrr0_v angMom_a angMom_b angMom_c totAngMom_a totAngMom_b totAngMom_c
| (_,_) ->
let cp = [| angMom_c.(0) ; angMom_c.(1) ; angMom_c.(2) |]
and dm = [| angMom_d.(0) ; angMom_d.(1) ; angMom_d.(2) |]
@ -220,13 +249,13 @@ let hvrr_two_e_vector m (angMom_a, angMom_b, angMom_c, angMom_d)
cp.(xyz) <- cp.(xyz) + 1;
dm.(xyz) <- dm.(xyz) - 1;
let h1 =
hrr_v m angMom_a angMom_b cp dm totAngMom_a totAngMom_b (totAngMom_c+1) (totAngMom_d-1)
hrr_v angMom_a angMom_b cp dm totAngMom_a totAngMom_b (totAngMom_c+1) (totAngMom_d-1)
and h2 =
hrr_v m angMom_a angMom_b angMom_c dm totAngMom_a totAngMom_b totAngMom_c (totAngMom_d-1)
hrr_v angMom_a angMom_b angMom_c dm totAngMom_a totAngMom_b totAngMom_c (totAngMom_d-1)
in
Array.mapi (fun k center_cd -> h1.(k) +. h2.(k) *. (Coordinate.coord center_cd xyz)) center_cd
in
hrr_v m angMom_a angMom_b angMom_c angMom_d totAngMom_a totAngMom_b
hrr_v angMom_a angMom_b angMom_c angMom_d totAngMom_a totAngMom_b
totAngMom_c totAngMom_d
@ -361,7 +390,7 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
) shell_q
in
let integral =
hvrr_two_e_vector 0 (angMomA, angMomB, angMomC, angMomD)
hvrr_two_e_vector (angMomA, angMomB, angMomC, angMomD)
(Contracted_shell.totAngMom shell_a, Contracted_shell.totAngMom shell_b,
Contracted_shell.totAngMom shell_c, Contracted_shell.totAngMom shell_d)
(maxm, zero_m_array)