mirror of
https://gitlab.com/scemama/QCaml.git
synced 2024-12-22 12:23:31 +01:00
Added RR
This commit is contained in:
parent
58d4c2695a
commit
70fe4145f3
@ -85,7 +85,7 @@ With opam, you can install the current development version of your
|
||||
project as a single opam package. It will override the currently
|
||||
installed package of the same name, if any:
|
||||
```
|
||||
$ opam pin add proj .
|
||||
$ opam pin add QCaml .
|
||||
```
|
||||
For more information on `opam pin`, please consult the opam documentation.
|
||||
|
||||
|
183
gaussian_integrals/lib/two_electron_integrals.ml
Normal file
183
gaussian_integrals/lib/two_electron_integrals.ml
Normal file
@ -0,0 +1,183 @@
|
||||
(** Two electron integrals
|
||||
*)
|
||||
|
||||
open Qcaml_common
|
||||
open Qcaml_linear_algebra
|
||||
open Qcaml_gaussian_basis
|
||||
|
||||
open Constants
|
||||
let cutoff = integrals_cutoff
|
||||
|
||||
module Bs = Basis
|
||||
module Cs = Contracted_shell
|
||||
module Csp = Contracted_shell_pair
|
||||
module Cspc = Contracted_shell_pair_couple
|
||||
module Fis = Four_idx_storage
|
||||
|
||||
module type Two_ei_structure =
|
||||
sig
|
||||
val name : string
|
||||
val class_of_contracted_shell_pair_couple :
|
||||
basis:Basis.t -> Cspc.t -> float Zmap.t
|
||||
end
|
||||
|
||||
|
||||
module Make(T : Two_ei_structure) = struct
|
||||
|
||||
include Four_idx_storage
|
||||
|
||||
let class_of_contracted_shell_pair_couple = T.class_of_contracted_shell_pair_couple
|
||||
|
||||
let filter_contracted_shell_pairs ?(cutoff=integrals_cutoff) ~basis shell_pairs =
|
||||
List.rev_map (fun pair ->
|
||||
match Cspc.make ~cutoff pair pair with
|
||||
| Some cspc ->
|
||||
let cls = class_of_contracted_shell_pair_couple ~basis cspc in
|
||||
(pair, Zmap.fold (fun _key value accu -> max (abs_float value) accu) cls 0. )
|
||||
(* TODO \sum_k |coef_k * integral_k| *)
|
||||
| None -> (pair, -1.)
|
||||
) shell_pairs
|
||||
|> List.filter (fun (_, schwartz_p_max) -> schwartz_p_max >= cutoff)
|
||||
|> List.rev_map fst
|
||||
|
||||
|
||||
(* TODO
|
||||
let filter_contracted_shell_pair_couples
|
||||
?(cutoff=integrals_cutoff) shell_pair_couples =
|
||||
List.rev_map (fun pair ->
|
||||
let cls =
|
||||
class_of_contracted_shell_pairs pair pair
|
||||
in
|
||||
(pair, Zmap.fold (fun key value accu -> max (abs_float value) accu) cls 0. )
|
||||
) shell_pairs
|
||||
|> List.filter (fun (_, schwartz_p_max) -> schwartz_p_max >= cutoff)
|
||||
|> List.rev_map fst
|
||||
|
||||
*)
|
||||
|
||||
|
||||
let store_class ?(cutoff=integrals_cutoff) data contracted_shell_pair_couple cls =
|
||||
let to_powers x =
|
||||
let open Zkey in
|
||||
match to_powers x with
|
||||
| Three x -> x
|
||||
| _ -> assert false
|
||||
in
|
||||
|
||||
let shell_p = Cspc.shell_pair_p contracted_shell_pair_couple
|
||||
and shell_q = Cspc.shell_pair_q contracted_shell_pair_couple
|
||||
in
|
||||
|
||||
Array.iteri (fun i_c powers_i ->
|
||||
let i_c = Cs.index (Csp.shell_a shell_p) + i_c + 1 in
|
||||
let xi = to_powers powers_i in
|
||||
Array.iteri (fun j_c powers_j ->
|
||||
let j_c = Cs.index (Csp.shell_b shell_p) + j_c + 1 in
|
||||
let xj = to_powers powers_j in
|
||||
Array.iteri (fun k_c powers_k ->
|
||||
let k_c = Cs.index (Csp.shell_a shell_q) + k_c + 1 in
|
||||
let xk = to_powers powers_k in
|
||||
Array.iteri (fun l_c powers_l ->
|
||||
let l_c = Cs.index (Csp.shell_b shell_q) + l_c + 1 in
|
||||
let xl = to_powers powers_l in
|
||||
let key = Zkey.of_powers_twelve xi xj xk xl in
|
||||
let value = Zmap.find cls key in
|
||||
if abs_float value > cutoff then
|
||||
set_chem data i_c j_c k_c l_c value
|
||||
) (Cs.zkey_array (Csp.shell_b shell_q))
|
||||
) (Cs.zkey_array (Csp.shell_a shell_q))
|
||||
) (Cs.zkey_array (Csp.shell_b shell_p))
|
||||
) (Cs.zkey_array (Csp.shell_a shell_p))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
let of_basis basis =
|
||||
|
||||
let n = Bs.size basis
|
||||
and shell = Bs.contracted_shells basis
|
||||
in
|
||||
|
||||
let eri_array =
|
||||
Fis.create ~size:n `Dense
|
||||
(*
|
||||
Fis.create ~size:n `Sparse
|
||||
*)
|
||||
in
|
||||
|
||||
|
||||
let t0 = Unix.gettimeofday () in
|
||||
|
||||
let shell_pairs =
|
||||
Csp.of_contracted_shell_array shell
|
||||
|> filter_contracted_shell_pairs ~basis ~cutoff
|
||||
in
|
||||
|
||||
Printf.printf "%d significant shell pairs computed in %f seconds\n"
|
||||
(List.length shell_pairs) (Unix.gettimeofday () -. t0);
|
||||
|
||||
let ishell = ref max_int in
|
||||
|
||||
|
||||
|
||||
let t0 = Unix.gettimeofday () in
|
||||
|
||||
let f shell_p =
|
||||
let () =
|
||||
(*
|
||||
if Parallel.rank < 2 && Cs.index (Csp.shell_a shell_p) < !ishell then
|
||||
*)
|
||||
if Cs.index (Csp.shell_a shell_p) < !ishell then
|
||||
(ishell := Cs.index (Csp.shell_a shell_p) ; print_int !ishell ; print_newline ())
|
||||
in
|
||||
|
||||
let sp =
|
||||
Csp.shell_pairs shell_p
|
||||
in
|
||||
|
||||
try
|
||||
List.iter (fun shell_q ->
|
||||
let () =
|
||||
if Cs.index (Csp.shell_a shell_q) >
|
||||
Cs.index (Csp.shell_a shell_p) then
|
||||
raise Exit
|
||||
in
|
||||
let sq = Csp.shell_pairs shell_q in
|
||||
let cspc =
|
||||
if Array.length sp < Array.length sq then
|
||||
Cspc.make ~cutoff shell_p shell_q
|
||||
else
|
||||
Cspc.make ~cutoff shell_q shell_p
|
||||
in
|
||||
|
||||
match cspc with
|
||||
| Some cspc ->
|
||||
let cls =
|
||||
class_of_contracted_shell_pair_couple ~basis cspc
|
||||
in
|
||||
store_class ~cutoff eri_array cspc cls
|
||||
| None -> ()
|
||||
) shell_pairs;
|
||||
with Exit -> ()
|
||||
in
|
||||
|
||||
(*
|
||||
List.rev shell_pairs
|
||||
*)
|
||||
shell_pairs
|
||||
(*
|
||||
|> Parallel.list_iter f ;
|
||||
*)
|
||||
|> List.iter f;
|
||||
Printf.printf "Computed %s Integrals in parallel in %f seconds\n%!"
|
||||
T.name (Unix.gettimeofday () -. t0);
|
||||
eri_array
|
||||
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
39
gaussian_integrals/lib/two_electron_integrals.mli
Normal file
39
gaussian_integrals/lib/two_electron_integrals.mli
Normal file
@ -0,0 +1,39 @@
|
||||
(** Two-electron integrals with an arbitrary operator, with a functorial interface
|
||||
parameterized by the fundamental two-electron integrals.
|
||||
|
||||
{% $(00|00)^m = \int \int \phi_p(r1) \hat{O} \phi_q(r2) dr_1 dr_2 $ %} : Fundamental two-electron integral
|
||||
|
||||
*)
|
||||
|
||||
open Qcaml_common
|
||||
open Qcaml_gaussian_basis
|
||||
open Qcaml_linear_algebra
|
||||
|
||||
module type Two_ei_structure =
|
||||
sig
|
||||
val name : string
|
||||
(** Name of the kind of integrals, for printing purposes. *)
|
||||
|
||||
val class_of_contracted_shell_pair_couple :
|
||||
basis:Basis.t -> Contracted_shell_pair_couple.t -> float Zmap.t
|
||||
(** Returns an integral class from a couple of contracted shells.
|
||||
The results is stored in a Zmap.
|
||||
*)
|
||||
end
|
||||
|
||||
|
||||
|
||||
module Make : functor (T : Two_ei_structure) ->
|
||||
sig
|
||||
include module type of Four_idx_storage
|
||||
|
||||
val filter_contracted_shell_pairs :
|
||||
?cutoff:float -> basis:Basis.t ->
|
||||
Contracted_shell_pair.t list -> Contracted_shell_pair.t list
|
||||
(** Uses Schwartz screening on contracted shell pairs. *)
|
||||
|
||||
val of_basis : Basis.t -> t
|
||||
(** Compute all ERI's for a given {!Basis.t}. *)
|
||||
|
||||
end
|
||||
|
523
gaussian_integrals/lib/two_electron_rr.ml
Normal file
523
gaussian_integrals/lib/two_electron_rr.ml
Normal file
@ -0,0 +1,523 @@
|
||||
open Qcaml_common
|
||||
open Qcaml_gaussian_basis
|
||||
|
||||
module Am = Angular_momentum
|
||||
module Asp = Atomic_shell_pair
|
||||
module Aspc = Atomic_shell_pair_couple
|
||||
module Co = Coordinate
|
||||
module Cs = Contracted_shell
|
||||
module Csp = Contracted_shell_pair
|
||||
module Cspc = Contracted_shell_pair_couple
|
||||
module Po = Powers
|
||||
module Psp = Primitive_shell_pair
|
||||
module Pspc = Primitive_shell_pair_couple
|
||||
module Ps = Primitive_shell
|
||||
module Zp = Zero_m_parameters
|
||||
|
||||
let cutoff = Constants.integrals_cutoff
|
||||
let cutoff2 = cutoff *. cutoff
|
||||
|
||||
|
||||
exception NullQuartet
|
||||
|
||||
type four_idx_intermediates =
|
||||
{
|
||||
expo_b : float ;
|
||||
expo_d : float ;
|
||||
expo_p_inv : float ;
|
||||
expo_q_inv : float ;
|
||||
center_ab : Co.t ;
|
||||
center_cd : Co.t ;
|
||||
center_pq : Co.t ;
|
||||
center_pa : Co.t ;
|
||||
center_qc : Co.t ;
|
||||
zero_m_array : float array ;
|
||||
}
|
||||
|
||||
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
|
||||
let rec hvrr_two_e
|
||||
angMom_a angMom_b angMom_c angMom_d
|
||||
abcd map_1d map_2d =
|
||||
|
||||
(* Swap electrons 1 and 2 so that the max angular momentum is on 1 *)
|
||||
if angMom_a.Po.tot + angMom_b.Po.tot < angMom_c.Po.tot + angMom_d.Po.tot then
|
||||
let abcd = {
|
||||
expo_b = abcd.expo_d ;
|
||||
expo_d = abcd.expo_b ;
|
||||
expo_p_inv = abcd.expo_q_inv ;
|
||||
expo_q_inv = abcd.expo_p_inv ;
|
||||
center_ab = abcd.center_cd ;
|
||||
center_cd = abcd.center_ab ;
|
||||
center_pq = Co.neg abcd.center_pq ;
|
||||
center_pa = abcd.center_qc ;
|
||||
center_qc = abcd.center_pa ;
|
||||
zero_m_array = abcd.zero_m_array ;
|
||||
} in
|
||||
hvrr_two_e
|
||||
angMom_c angMom_d angMom_a angMom_b
|
||||
abcd map_1d map_2d
|
||||
|
||||
else
|
||||
|
||||
let maxm = angMom_a.Po.tot + angMom_b.Po.tot + angMom_c.Po.tot + angMom_d.Po.tot in
|
||||
let maxsze = maxm+1 in
|
||||
|
||||
|
||||
let get_xyz angMom =
|
||||
match angMom with
|
||||
| { Po.y=0 ; z=0 ; _ } -> Co.X
|
||||
| { z=0 ; _ } -> Co.Y
|
||||
| _ -> Co.Z
|
||||
in
|
||||
|
||||
let expo_p_inv = abcd.expo_p_inv
|
||||
and expo_q_inv = abcd.expo_q_inv
|
||||
and center_ab = abcd.center_ab
|
||||
and center_cd = abcd.center_cd
|
||||
and center_pq = abcd.center_pq
|
||||
in
|
||||
|
||||
(* Vertical recurrence relations *)
|
||||
let rec vrr0 angMom_a =
|
||||
|
||||
match angMom_a.Po.tot with
|
||||
| 0 -> abcd.zero_m_array
|
||||
| _ ->
|
||||
let key = Zkey.of_powers_three angMom_a in
|
||||
|
||||
try Zmap.find map_1d key with
|
||||
| Not_found ->
|
||||
let result =
|
||||
let xyz = get_xyz angMom_a in
|
||||
let am = Po.decr xyz angMom_a in
|
||||
let amxyz = Po.get xyz am in
|
||||
|
||||
let f1 = expo_p_inv *. Co.get xyz center_pq
|
||||
and f2 = abcd.expo_b *. expo_p_inv *. Co.get xyz center_ab
|
||||
in
|
||||
let result = Array.create_float (maxsze - angMom_a.Po.tot) in
|
||||
if amxyz = 0 then
|
||||
begin
|
||||
let v1 = vrr0 am in
|
||||
Array.iteri (fun m _ ->
|
||||
result.(m) <- f1 *. v1.(m+1) -. f2 *. v1.(m)) result
|
||||
end
|
||||
else
|
||||
begin
|
||||
let amm = Po.decr xyz am in
|
||||
let v3 = vrr0 amm in
|
||||
let v1 = vrr0 am in
|
||||
let f3 = (Util.float_of_int_fast amxyz) *. expo_p_inv *. 0.5 in
|
||||
Array.iteri (fun m _ ->
|
||||
result.(m) <- f1 *. v1.(m+1) -. f2 *. v1.(m)
|
||||
+. f3 *. (v3.(m) +. expo_p_inv *. v3.(m+1)) ) result
|
||||
end;
|
||||
result
|
||||
in Zmap.add map_1d key result;
|
||||
result
|
||||
|
||||
|
||||
and vrr angMom_a angMom_c =
|
||||
|
||||
match angMom_a.Po.tot, angMom_c.Po.tot with
|
||||
| (i,0) -> if (i>0) then vrr0 angMom_a
|
||||
else abcd.zero_m_array
|
||||
| (_,_) ->
|
||||
let key = Zkey.of_powers_six angMom_a angMom_c in
|
||||
|
||||
try Zmap.find map_2d key with
|
||||
| Not_found ->
|
||||
let result =
|
||||
(* angMom_c.Po.tot > 0 so cm.Po.tot >= 0 *)
|
||||
let xyz = get_xyz angMom_c in
|
||||
let cm = Po.decr xyz angMom_c in
|
||||
let cmxyz = Po.get xyz cm in
|
||||
let axyz = Po.get xyz angMom_a in
|
||||
|
||||
let f1 =
|
||||
-. abcd.expo_d *. expo_q_inv *. Co.get xyz center_cd
|
||||
and f2 =
|
||||
expo_q_inv *. Co.get xyz center_pq
|
||||
in
|
||||
let result = Array.make (maxsze - angMom_a.Po.tot - angMom_c.Po.tot) 0. in
|
||||
if axyz > 0 then
|
||||
begin
|
||||
let am = Po.decr xyz angMom_a in
|
||||
let f5 =
|
||||
(Util.float_of_int_fast axyz) *. expo_p_inv *. expo_q_inv *. 0.5
|
||||
in
|
||||
if (abs_float f5 > cutoff) then
|
||||
let v5 =
|
||||
vrr am cm
|
||||
in
|
||||
Array.iteri (fun m _ ->
|
||||
result.(m) <- result.(m) -. f5 *. v5.(m+1)) result
|
||||
end;
|
||||
if cmxyz > 0 then
|
||||
begin
|
||||
let f3 =
|
||||
(Util.float_of_int_fast cmxyz) *. expo_q_inv *. 0.5
|
||||
in
|
||||
if (abs_float f3 > cutoff) ||
|
||||
(abs_float (f3 *. expo_q_inv) > cutoff) then
|
||||
begin
|
||||
let v3 =
|
||||
let cmm = Po.decr xyz cm in
|
||||
vrr angMom_a cmm
|
||||
in
|
||||
Array.iteri (fun m _ ->
|
||||
result.(m) <- result.(m) +.
|
||||
f3 *. (v3.(m) +. expo_q_inv *. v3.(m+1)) ) result
|
||||
end
|
||||
end;
|
||||
if ( (abs_float f1 > cutoff) || (abs_float f2 > cutoff) ) then
|
||||
begin
|
||||
let v1 =
|
||||
vrr angMom_a cm
|
||||
in
|
||||
Array.iteri (fun m _ ->
|
||||
result.(m) <- result.(m) +. f1 *. v1.(m) -. f2 *. v1.(m+1) ) result
|
||||
end;
|
||||
result
|
||||
in Zmap.add map_2d key result;
|
||||
result
|
||||
|
||||
(*
|
||||
and trr angMom_a angMom_c =
|
||||
|
||||
match (angMom_a.Po.tot, angMom_c.Po.tot) with
|
||||
| (i,0) -> if (i>0) then (vrr0 angMom_a).(0)
|
||||
else abcd.zero_m_array.(0)
|
||||
| (_,_) ->
|
||||
let key = Zkey.of_powers_six angMom_a angMom_c in
|
||||
|
||||
try (Zmap.find map_2d key).(0) with
|
||||
| Not_found ->
|
||||
let result =
|
||||
let xyz = get_xyz angMom_c in
|
||||
let axyz = Po.get xyz angMom_a in
|
||||
let cm = Po.decr xyz angMom_c in
|
||||
let cmxyz = Po.get xyz cm in
|
||||
|
||||
let expo_inv_q_over_p = expo_q_inv /. expo_p_inv in
|
||||
let f =
|
||||
Co.get xyz center_qc +. expo_inv_q_over_p *.
|
||||
Co.get xyz center_pa
|
||||
in
|
||||
let result = 0. in
|
||||
|
||||
let result =
|
||||
if cmxyz < 1 then result else
|
||||
let f = 0.5 *. (float_of_int_fast cmxyz) *. expo_q_inv in
|
||||
if abs_float f < cutoff then 0. else
|
||||
let cmm = Po.decr xyz cm in
|
||||
let v3 = trr angMom_a cmm in
|
||||
result +. f *. v3
|
||||
in
|
||||
let result =
|
||||
if abs_float f < cutoff then result else
|
||||
let v1 = trr angMom_a cm in
|
||||
result +. f *. v1
|
||||
in
|
||||
let result =
|
||||
if cmxyz < 0 then result else
|
||||
let f = -. expo_inv_q_over_p in
|
||||
let ap = Po.incr xyz angMom_a in
|
||||
let v4 = trr ap cm in
|
||||
result +. v4 *. f
|
||||
in
|
||||
let result =
|
||||
if axyz < 1 then result else
|
||||
let f = 0.5 *. (float_of_int_fast axyz) *. expo_q_inv in
|
||||
if abs_float f < cutoff then result else
|
||||
let am = Po.decr xyz angMom_a in
|
||||
let v2 = trr am cm in
|
||||
result +. f *. v2
|
||||
in
|
||||
result
|
||||
in
|
||||
Zmap.add map_2d key [|result|];
|
||||
result
|
||||
|
||||
*)
|
||||
in
|
||||
|
||||
|
||||
let vrr a c =
|
||||
(vrr a c).(0)
|
||||
(*
|
||||
if maxm < 10 then (vrr a c).(0) else trr a c
|
||||
*)
|
||||
in
|
||||
|
||||
|
||||
(* Horizontal recurrence relations *)
|
||||
let rec hrr0 angMom_a angMom_b angMom_c =
|
||||
|
||||
match angMom_b.Po.tot with
|
||||
| 1 ->
|
||||
let xyz = get_xyz angMom_b in
|
||||
let ap = Po.incr xyz angMom_a in
|
||||
let v1 = vrr ap angMom_c in
|
||||
let f2 = Co.get xyz center_ab in
|
||||
if (abs_float f2 < cutoff) then v1 else
|
||||
let v2 = vrr angMom_a angMom_c in
|
||||
v1 +. f2 *. v2
|
||||
| 0 -> vrr angMom_a angMom_c
|
||||
| _ ->
|
||||
let xyz = get_xyz angMom_b in
|
||||
let bxyz = Po.get xyz angMom_b in
|
||||
if bxyz > 0 then
|
||||
let ap = Po.incr xyz angMom_a in
|
||||
let bm = Po.decr xyz angMom_b in
|
||||
let h1 = hrr0 ap bm angMom_c in
|
||||
let f2 = Co.get xyz center_ab in
|
||||
if abs_float f2 < cutoff then h1 else
|
||||
let h2 = hrr0 angMom_a bm angMom_c in
|
||||
h1 +. f2 *. h2
|
||||
else 0.
|
||||
|
||||
|
||||
and hrr angMom_a angMom_b angMom_c angMom_d =
|
||||
|
||||
match (angMom_b.Po.tot, angMom_d.Po.tot) with
|
||||
| (_,0) ->
|
||||
if (angMom_b.Po.tot = 0) then
|
||||
vrr angMom_a angMom_c
|
||||
else
|
||||
hrr0 angMom_a angMom_b angMom_c
|
||||
| (_,_) ->
|
||||
let xyz = get_xyz angMom_d in
|
||||
let cp = Po.incr xyz angMom_c in
|
||||
let dm = Po.decr xyz angMom_d in
|
||||
let h1 = hrr angMom_a angMom_b cp dm in
|
||||
let f2 = Co.get xyz center_cd in
|
||||
if abs_float f2 < cutoff then h1 else
|
||||
let h2 = hrr angMom_a angMom_b angMom_c dm in
|
||||
h1 +. f2 *. h2
|
||||
|
||||
in
|
||||
hrr angMom_a angMom_b angMom_c angMom_d
|
||||
|
||||
|
||||
|
||||
|
||||
let contracted_class_shell_pair_couple ~basis ~zero_m shell_pair_couple : float Zmap.t =
|
||||
|
||||
let maxm = Am.to_int (Cspc.ang_mom shell_pair_couple) in
|
||||
|
||||
(* Pre-computation of integral class indices *)
|
||||
let class_indices = Cspc.zkey_array shell_pair_couple in
|
||||
|
||||
let contracted_class =
|
||||
Array.make (Array.length class_indices) 0.;
|
||||
in
|
||||
|
||||
let monocentric =
|
||||
Cspc.monocentric shell_pair_couple
|
||||
in
|
||||
|
||||
(* Compute all integrals in the shell for each pair of significant shell pairs *)
|
||||
|
||||
let shell_p = Cspc.shell_pair_p shell_pair_couple
|
||||
and shell_q = Cspc.shell_pair_q shell_pair_couple
|
||||
in
|
||||
|
||||
let center_ab = Csp.a_minus_b shell_p
|
||||
and center_cd = Csp.a_minus_b shell_q
|
||||
in
|
||||
|
||||
let norm_scales = Cspc.norm_scales shell_pair_couple in
|
||||
|
||||
List.iter (fun (coef_prod, spc) ->
|
||||
|
||||
let sp_ab = Pspc.shell_pair_p spc
|
||||
and sp_cd = Pspc.shell_pair_q spc
|
||||
in
|
||||
|
||||
let center_pq = Co.(Psp.center sp_ab |- Psp.center sp_cd) in
|
||||
let center_pa = Psp.center_minus_a sp_ab in
|
||||
let center_qc = Psp.center_minus_a sp_cd in
|
||||
let norm_pq_sq = Co.dot center_pq center_pq in
|
||||
let expo_p_inv = Psp.exponent_inv sp_ab in
|
||||
let expo_q_inv = Psp.exponent_inv sp_cd in
|
||||
let zero = Zp.zero basis zero_m in
|
||||
let zero_m_array = zero_m
|
||||
{ zero with
|
||||
maxm ; expo_p_inv ; expo_q_inv ; norm_pq_sq ;
|
||||
center_pq ; center_pa ; center_qc ;
|
||||
}
|
||||
in
|
||||
|
||||
begin
|
||||
match Cspc.ang_mom shell_pair_couple with
|
||||
| Am.S ->
|
||||
let integral = zero_m_array.(0) in
|
||||
contracted_class.(0) <- contracted_class.(0) +. coef_prod *. integral
|
||||
| _ ->
|
||||
let expo_b = Ps.exponent (Psp.shell_b sp_ab)
|
||||
and expo_d = Ps.exponent (Psp.shell_b sp_cd)
|
||||
in
|
||||
let map_1d = Zmap.create (4*maxm)
|
||||
and map_2d = Zmap.create (Array.length class_indices)
|
||||
in
|
||||
|
||||
(* Compute the integral class from the primitive shell quartet *)
|
||||
class_indices
|
||||
|> Array.iteri (fun i key ->
|
||||
let (angMom_a,angMom_b,angMom_c,angMom_d) =
|
||||
match Zkey.to_powers key with
|
||||
| Zkey.Twelve x -> x
|
||||
| _ -> assert false
|
||||
in
|
||||
try
|
||||
if monocentric then
|
||||
begin
|
||||
if ( ((1 land angMom_a.Po.x + angMom_b.Po.x + angMom_c.Po.x + angMom_d.Po.x)=1) ||
|
||||
((1 land angMom_a.Po.y + angMom_b.Po.y + angMom_c.Po.y + angMom_d.Po.y)=1) ||
|
||||
((1 land angMom_a.Po.z + angMom_b.Po.z + angMom_c.Po.z + angMom_d.Po.z)=1)
|
||||
) then
|
||||
raise NullQuartet
|
||||
end;
|
||||
|
||||
let norm = norm_scales.(i) in
|
||||
let coef_prod = coef_prod *. norm in
|
||||
|
||||
let abcd = {
|
||||
expo_b ; expo_d ; expo_p_inv ; expo_q_inv ;
|
||||
center_ab ; center_cd ; center_pq ;
|
||||
center_pa ; center_qc ; zero_m_array ;
|
||||
} in
|
||||
let integral =
|
||||
hvrr_two_e
|
||||
angMom_a angMom_b angMom_c angMom_d
|
||||
abcd map_1d map_2d
|
||||
in
|
||||
contracted_class.(i) <- contracted_class.(i) +. coef_prod *. integral
|
||||
with NullQuartet -> ()
|
||||
)
|
||||
end
|
||||
) (Cspc.coefs_and_shell_pair_couples shell_pair_couple);
|
||||
|
||||
let result =
|
||||
Zmap.create (Array.length contracted_class)
|
||||
in
|
||||
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
|
||||
result
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
let contracted_class_atomic_shell_pair_couple ~basis ~zero_m atomic_shell_pair_couple : float Zmap.t =
|
||||
|
||||
let maxm = Am.to_int (Aspc.ang_mom atomic_shell_pair_couple) in
|
||||
|
||||
(* Pre-computation of integral class indices *)
|
||||
let class_indices = Aspc.zkey_array atomic_shell_pair_couple in
|
||||
|
||||
let contracted_class =
|
||||
Array.make (Array.length class_indices) 0.;
|
||||
in
|
||||
|
||||
let monocentric =
|
||||
Aspc.monocentric atomic_shell_pair_couple
|
||||
in
|
||||
|
||||
let shell_p = Aspc.atomic_shell_pair_p atomic_shell_pair_couple
|
||||
and shell_q = Aspc.atomic_shell_pair_q atomic_shell_pair_couple
|
||||
in
|
||||
|
||||
(* Compute all integrals in the shell for each pair of significant shell pairs *)
|
||||
|
||||
let center_ab = Asp.a_minus_b shell_p
|
||||
and center_cd = Asp.a_minus_b shell_q
|
||||
in
|
||||
|
||||
let norm_scales = Aspc.norm_scales atomic_shell_pair_couple in
|
||||
|
||||
|
||||
List.iter (fun cspc ->
|
||||
List.iter (fun (coef_prod, spc) ->
|
||||
let sp_ab = Pspc.shell_pair_p spc
|
||||
and sp_cd = Pspc.shell_pair_q spc
|
||||
in
|
||||
|
||||
let expo_p_inv = Psp.exponent_inv sp_ab
|
||||
in
|
||||
|
||||
let center_pq = Co.(Psp.center sp_ab |- Psp.center sp_cd) in
|
||||
let center_qc = Psp.center_minus_a sp_cd in
|
||||
let center_pa = Psp.center_minus_a sp_ab in
|
||||
let norm_pq_sq = Co.dot center_pq center_pq in
|
||||
let expo_q_inv = Psp.exponent_inv sp_cd in
|
||||
|
||||
let zero = Zp.zero basis zero_m in
|
||||
let zero_m_array = zero_m
|
||||
{ zero with
|
||||
maxm ; expo_p_inv ; expo_q_inv ; norm_pq_sq ;
|
||||
center_pq ; center_pa ; center_qc ;
|
||||
}
|
||||
in
|
||||
|
||||
begin
|
||||
match Aspc.ang_mom atomic_shell_pair_couple with
|
||||
| Am.S ->
|
||||
let integral = zero_m_array.(0) in
|
||||
contracted_class.(0) <- contracted_class.(0) +. coef_prod *. integral
|
||||
| _ ->
|
||||
let expo_b = Ps.exponent (Psp.shell_b sp_ab)
|
||||
and expo_d = Ps.exponent (Psp.shell_b sp_cd)
|
||||
in
|
||||
let map_1d = Zmap.create (4*maxm)
|
||||
and map_2d = Zmap.create (Array.length class_indices)
|
||||
in
|
||||
|
||||
(* Compute the integral class from the primitive shell quartet *)
|
||||
class_indices
|
||||
|> Array.iteri (fun i key ->
|
||||
let (angMom_a,angMom_b,angMom_c,angMom_d) =
|
||||
match Zkey.to_powers key with
|
||||
| Zkey.Twelve x -> x
|
||||
| _ -> assert false
|
||||
in
|
||||
try
|
||||
if monocentric then
|
||||
begin
|
||||
if ( ((1 land angMom_a.Po.x + angMom_b.Po.x + angMom_c.Po.x + angMom_d.Po.x)=1) ||
|
||||
((1 land angMom_a.Po.y + angMom_b.Po.y + angMom_c.Po.y + angMom_d.Po.y)=1) ||
|
||||
((1 land angMom_a.Po.z + angMom_b.Po.z + angMom_c.Po.z + angMom_d.Po.z)=1)
|
||||
) then
|
||||
raise NullQuartet
|
||||
end;
|
||||
|
||||
let norm = norm_scales.(i) in
|
||||
let coef_prod = coef_prod *. norm in
|
||||
|
||||
let abcd = {
|
||||
expo_b ; expo_d ; expo_p_inv ; expo_q_inv ;
|
||||
center_ab ; center_cd ; center_pq ;
|
||||
center_pa ; center_qc ; zero_m_array ;
|
||||
} in
|
||||
let integral =
|
||||
hvrr_two_e
|
||||
angMom_a angMom_b angMom_c angMom_d
|
||||
abcd
|
||||
map_1d map_2d
|
||||
in
|
||||
contracted_class.(i) <- contracted_class.(i) +. coef_prod *. integral
|
||||
with NullQuartet -> ()
|
||||
)
|
||||
end
|
||||
) (Cspc.coefs_and_shell_pair_couples cspc)
|
||||
) (Aspc.contracted_shell_pair_couples atomic_shell_pair_couple);
|
||||
|
||||
let result =
|
||||
Zmap.create (Array.length contracted_class)
|
||||
in
|
||||
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
|
||||
result
|
||||
|
875
gaussian_integrals/lib/two_electron_rr_vectorized.ml
Normal file
875
gaussian_integrals/lib/two_electron_rr_vectorized.ml
Normal file
@ -0,0 +1,875 @@
|
||||
open Qcaml_common
|
||||
open Qcaml_gaussian_basis
|
||||
open Qcaml_linear_algebra
|
||||
|
||||
module Am = Angular_momentum
|
||||
module Co = Coordinate
|
||||
module Cs = Contracted_shell
|
||||
module Csp = Contracted_shell_pair
|
||||
module Cspc = Contracted_shell_pair_couple
|
||||
module Po = Powers
|
||||
module Psp = Primitive_shell_pair
|
||||
module Ps = Primitive_shell
|
||||
module Zp = Zero_m_parameters
|
||||
|
||||
exception NullQuartet
|
||||
exception Found
|
||||
|
||||
let cutoff = Constants.integrals_cutoff
|
||||
let cutoff2 = cutoff *. cutoff
|
||||
let empty = Zmap.create 0
|
||||
|
||||
let at_least_one_valid arr =
|
||||
try
|
||||
Array.iter (fun x -> if (abs_float x > cutoff) then raise Found) arr ; false
|
||||
with Found -> true
|
||||
|
||||
type four_idx_intermediate =
|
||||
{
|
||||
expo_b : float array;
|
||||
expo_d : float array;
|
||||
expo_p_inv : float array;
|
||||
expo_q_inv : float array;
|
||||
center_ab : Co.t ;
|
||||
center_cd : Co.t ;
|
||||
center_pq : Co.axis -> float array array;
|
||||
center_pa : Co.axis -> float array;
|
||||
center_qc : Co.axis -> float array;
|
||||
zero_m_array : float array array array;
|
||||
}
|
||||
|
||||
|
||||
|
||||
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
|
||||
let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
|
||||
abcd map_1d map_2d np nq
|
||||
=
|
||||
|
||||
let expo_p_inv = abcd.expo_p_inv
|
||||
and expo_q_inv = abcd.expo_q_inv
|
||||
and center_ab = abcd.center_ab
|
||||
and center_cd = abcd.center_cd
|
||||
and center_pq = abcd.center_pq
|
||||
in
|
||||
|
||||
let zero_m_array = abcd.zero_m_array in
|
||||
|
||||
let maxm = Array.length zero_m_array - 1 in
|
||||
|
||||
let get_xyz angMom =
|
||||
match angMom with
|
||||
| { Po.y=0 ; z=0 ; _ } -> Co.X
|
||||
| { z=0 ; _ } -> Co.Y
|
||||
| _ -> Co.Z
|
||||
in
|
||||
|
||||
(* Vertical recurrence relations *)
|
||||
let rec vrr0_v angMom_a =
|
||||
match angMom_a.Po.tot with
|
||||
| 0 -> zero_m_array
|
||||
| _ ->
|
||||
let key = Zkey.of_powers_three angMom_a
|
||||
in
|
||||
|
||||
try Zmap.find map_1d key with
|
||||
| Not_found ->
|
||||
let result =
|
||||
let xyz = get_xyz angMom_a in
|
||||
let am = Po.decr xyz angMom_a in
|
||||
let cab = Co.get xyz center_ab in
|
||||
let result = Array.init (maxm+1-angMom_a.Po.tot) (fun _ -> Array.make_matrix np nq 0.) in
|
||||
let v_am= vrr0_v am in
|
||||
|
||||
begin
|
||||
if abs_float cab >= cutoff then
|
||||
let expo_b = abcd.expo_b in
|
||||
Array.iteri (fun m result_m ->
|
||||
let v0 = v_am.(m) in
|
||||
Array.iteri (fun l result_ml ->
|
||||
let f0 = -. expo_b.(l) *. expo_p_inv.(l) *. cab
|
||||
and v0_l = v0.(l)
|
||||
in
|
||||
Array.iteri (fun k v0_lk ->
|
||||
result_ml.(k) <- v0_lk *. f0) v0_l
|
||||
) result_m
|
||||
) result
|
||||
end;
|
||||
let amxyz = Po.get xyz am in
|
||||
if amxyz < 1 then
|
||||
Array.iteri (fun l expo_inv_p_l ->
|
||||
let center_pq_xyz_l = (center_pq xyz).(l) in
|
||||
Array.iteri (fun m result_m ->
|
||||
let result_ml = result_m.(l) in
|
||||
let p0 = v_am.(m+1) in
|
||||
let p0_l = p0.(l)
|
||||
in
|
||||
Array.iteri (fun k p0_lk ->
|
||||
result_ml.(k) <- result_ml.(k)
|
||||
+. expo_inv_p_l *. center_pq_xyz_l.(k) *. p0_lk
|
||||
) p0_l
|
||||
) result
|
||||
) expo_p_inv
|
||||
else
|
||||
begin
|
||||
let amm = Po.decr xyz am in
|
||||
let amxyz = Util.float_of_int_fast amxyz in
|
||||
let v_amm = vrr0_v amm in
|
||||
Array.iteri (fun l expo_inv_p_l ->
|
||||
let f = amxyz *. expo_p_inv.(l) *. 0.5
|
||||
and center_pq_xyz_l = (center_pq xyz).(l)
|
||||
in
|
||||
Array.iteri (fun m result_m ->
|
||||
let v1 = v_amm.(m) in
|
||||
let v1_l = v1.(l) in
|
||||
let result_ml = result_m.(l) in
|
||||
let v2 = v_amm.(m+1) in
|
||||
let p0 = v_am.(m+1) in
|
||||
let v2_l = v2.(l)
|
||||
in
|
||||
Array.iteri (fun k p0_lk ->
|
||||
result_ml.(k) <- result_ml.(k) +.
|
||||
expo_inv_p_l *. center_pq_xyz_l.(k) *. p0_lk +.
|
||||
f *. (v1_l.(k) +. v2_l.(k) *. expo_inv_p_l)
|
||||
) p0.(l)
|
||||
) result
|
||||
) expo_p_inv
|
||||
end;
|
||||
result
|
||||
in
|
||||
Zmap.add map_1d key result;
|
||||
result
|
||||
|
||||
and vrr_v m angMom_a angMom_c =
|
||||
|
||||
match (angMom_a.Po.tot, angMom_c.Po.tot) with
|
||||
| (_,0) -> Some (vrr0_v angMom_a).(m)
|
||||
| (_,_) ->
|
||||
|
||||
let key = Zkey.of_powers_six angMom_a angMom_c in
|
||||
|
||||
try Zmap.find map_2d.(m) key with
|
||||
| Not_found ->
|
||||
let result =
|
||||
begin
|
||||
let xyz = get_xyz angMom_c in
|
||||
let cm = Po.decr xyz angMom_c in
|
||||
let axyz = Po.get xyz angMom_a in
|
||||
|
||||
let do_compute = ref false in
|
||||
let v1 =
|
||||
let f = -. (Co.get xyz center_cd) in
|
||||
|
||||
let f1 =
|
||||
let expo_d = abcd.expo_d in
|
||||
Array.init nq (fun k ->
|
||||
let x = expo_d.(k) *. expo_q_inv.(k) *. f in
|
||||
if ( (not !do_compute) && (abs_float x > cutoff) ) then
|
||||
do_compute := true;
|
||||
x)
|
||||
in
|
||||
if (!do_compute) then
|
||||
match vrr_v m angMom_a cm with
|
||||
| None -> None
|
||||
| Some v1 ->
|
||||
begin
|
||||
Some (Array.init np (fun l ->
|
||||
let v1_l = v1.(l) in
|
||||
Array.mapi (fun k f1k -> v1_l.(k) *. f1k) f1
|
||||
) )
|
||||
end
|
||||
else None
|
||||
in
|
||||
|
||||
let v2 =
|
||||
let f2 =
|
||||
Array.init np (fun l ->
|
||||
let cpq_l = (center_pq xyz).(l) in
|
||||
Array.init nq (fun k ->
|
||||
let x = expo_q_inv.(k) *. cpq_l.(k) in
|
||||
if (!do_compute) then x
|
||||
else (if abs_float x > cutoff then do_compute := true ; x)
|
||||
) )
|
||||
in
|
||||
if (!do_compute) then
|
||||
match vrr_v (m+1) angMom_a cm with
|
||||
| None -> None
|
||||
| Some v2 ->
|
||||
begin
|
||||
for l=0 to np-1 do
|
||||
let f2_l = f2.(l)
|
||||
and v2_l = v2.(l)
|
||||
in
|
||||
for k=0 to nq-1 do
|
||||
f2_l.(k) <- -. v2_l.(k) *. f2_l.(k)
|
||||
done
|
||||
done;
|
||||
Some f2
|
||||
end
|
||||
else None
|
||||
in
|
||||
|
||||
let p1 =
|
||||
match v1, v2 with
|
||||
| None, None -> None
|
||||
| None, Some v2 -> Some v2
|
||||
| Some v1, None -> Some v1
|
||||
| Some v1, Some v2 ->
|
||||
begin
|
||||
for l=0 to np-1 do
|
||||
let v1_l = v1.(l)
|
||||
and v2_l = v2.(l)
|
||||
in
|
||||
for k=0 to nq-1 do
|
||||
v2_l.(k) <- v2_l.(k) +. v1_l.(k)
|
||||
done
|
||||
done;
|
||||
Some v2
|
||||
end
|
||||
in
|
||||
|
||||
let cxyz = Po.get xyz angMom_c in
|
||||
let p2 =
|
||||
if cxyz < 2 then p1 else
|
||||
let cmm = Po.decr xyz cm in
|
||||
let fcm = (Util.float_of_int_fast (cxyz-1)) *. 0.5 in
|
||||
let f1 =
|
||||
Array.init nq (fun k ->
|
||||
let x = fcm *. expo_q_inv.(k) in
|
||||
if (!do_compute) then x
|
||||
else (if abs_float x > cutoff then do_compute := true ; x)
|
||||
)
|
||||
in
|
||||
let v1 =
|
||||
if (!do_compute) then
|
||||
match vrr_v m angMom_a cmm with
|
||||
| None -> None
|
||||
| Some v1 ->
|
||||
begin
|
||||
let result = Array.make_matrix np nq 0. in
|
||||
for l=0 to np-1 do
|
||||
let v1_l = v1.(l)
|
||||
and result_l = result.(l)
|
||||
in
|
||||
for k=0 to nq-1 do
|
||||
result_l.(k) <- v1_l.(k) *. f1.(k)
|
||||
done;
|
||||
done;
|
||||
Some result
|
||||
end
|
||||
else None
|
||||
in
|
||||
|
||||
let v3 =
|
||||
let f2 =
|
||||
Array.init nq (fun k ->
|
||||
let x = expo_q_inv.(k) *. f1.(k) in
|
||||
if (!do_compute) then x
|
||||
else (if abs_float x > cutoff then do_compute := true ; x)
|
||||
)
|
||||
in
|
||||
if (!do_compute) then
|
||||
match vrr_v (m+1) angMom_a cmm with
|
||||
| None -> None
|
||||
| Some v3 ->
|
||||
begin
|
||||
let result = Array.make_matrix np nq 0. in
|
||||
for l=0 to np-1 do
|
||||
let v3_l = v3.(l)
|
||||
and result_l = result.(l)
|
||||
in
|
||||
for k=0 to nq-1 do
|
||||
result_l.(k) <- v3_l.(k) *. f2.(k)
|
||||
done
|
||||
done;
|
||||
Some result
|
||||
end
|
||||
else None
|
||||
in
|
||||
match p1, v1, v3 with
|
||||
| None, None, None -> None
|
||||
| Some p1, None, None -> Some p1
|
||||
| None, Some v1, None -> Some v1
|
||||
| None, None, Some v3 -> Some v3
|
||||
| Some p1, Some v1, Some v3 ->
|
||||
begin
|
||||
for l=0 to np-1 do
|
||||
let v3_l = v3.(l)
|
||||
and v1_l = v1.(l)
|
||||
and p1_l = p1.(l)
|
||||
in
|
||||
for k=0 to nq-1 do
|
||||
v3_l.(k) <- p1_l.(k) +. v1_l.(k) +. v3_l.(k)
|
||||
done
|
||||
done;
|
||||
Some v3
|
||||
end
|
||||
| Some p1, Some v1, None ->
|
||||
begin
|
||||
for l=0 to np-1 do
|
||||
let v1_l = v1.(l)
|
||||
and p1_l = p1.(l)
|
||||
in
|
||||
for k=0 to nq-1 do
|
||||
p1_l.(k) <- v1_l.(k) +. p1_l.(k)
|
||||
done
|
||||
done;
|
||||
Some p1
|
||||
end
|
||||
| Some p1, None, Some v3 ->
|
||||
begin
|
||||
for l=0 to np-1 do
|
||||
let v3_l = v3.(l)
|
||||
and p1_l = p1.(l)
|
||||
in
|
||||
for k=0 to nq-1 do
|
||||
p1_l.(k) <- p1_l.(k) +. v3_l.(k)
|
||||
done
|
||||
done;
|
||||
Some p1
|
||||
end
|
||||
| None , Some v1, Some v3 ->
|
||||
begin
|
||||
for l=0 to np-1 do
|
||||
let v3_l = v3.(l)
|
||||
and v1_l = v1.(l)
|
||||
in
|
||||
for k=0 to nq-1 do
|
||||
v3_l.(k) <- v1_l.(k) +. v3_l.(k)
|
||||
done
|
||||
done;
|
||||
Some v3
|
||||
end
|
||||
in
|
||||
if (axyz < 1) || (cxyz < 1) then p2 else
|
||||
let am = Po.decr xyz angMom_a in
|
||||
let v =
|
||||
vrr_v (m+1) am cm
|
||||
in
|
||||
match (p2, v) with
|
||||
| None, None -> None
|
||||
| Some p2, None -> Some p2
|
||||
| _, Some v ->
|
||||
begin
|
||||
let p2 =
|
||||
match p2 with
|
||||
| None -> Array.make_matrix np nq 0.
|
||||
| Some p2 -> p2
|
||||
in
|
||||
for l=0 to np-1 do
|
||||
let fa = (Util.float_of_int_fast axyz) *. expo_p_inv.(l) *. 0.5 in
|
||||
let p2_l = p2.(l)
|
||||
and v_l = v.(l)
|
||||
in
|
||||
for k=0 to nq-1 do
|
||||
p2_l.(k) <- p2_l.(k) -. fa *. expo_q_inv.(k) *. v_l.(k)
|
||||
done
|
||||
done;
|
||||
Some p2
|
||||
end
|
||||
end
|
||||
in Zmap.add map_2d.(m) key result;
|
||||
result
|
||||
|
||||
(*
|
||||
and trr_v angMom_a angMom_c =
|
||||
|
||||
match (angMom_a.Po.tot, angMom_c.Po.tot) with
|
||||
| (i,0) -> Some (vrr0_v angMom_a).(0)
|
||||
| (_,_) ->
|
||||
|
||||
let key = Zkey.of_powers_six angMom_a angMom_c in
|
||||
|
||||
try Zmap.find map_2d.(0) key with
|
||||
| Not_found ->
|
||||
let xyz = get_xyz angMom_c in
|
||||
let axyz = Po.get xyz angMom_a in
|
||||
let cm = Po.decr xyz angMom_c in
|
||||
let cmxyz = Po.get xyz cm in
|
||||
let expo_inv_q_over_p =
|
||||
Array.mapi (fun l expo_inv_p_l ->
|
||||
let expo_p_l = 1./.expo_inv_p_l in
|
||||
Array.mapi (fun k expo_inv_q_k ->
|
||||
expo_inv_q_k *. expo_p_l) expo_q_inv ) expo_p_inv
|
||||
in
|
||||
let result = None in
|
||||
|
||||
let result =
|
||||
if cmxyz < 1 then result else
|
||||
begin
|
||||
let f = 0.5 *. (float_of_int_fast cmxyz) in
|
||||
let cmm = Po.decr xyz cm in
|
||||
match result, trr_v angMom_a cmm with
|
||||
| None, None -> None
|
||||
| None, Some v3 ->
|
||||
Some (Array.init np (fun l ->
|
||||
let v3_l = v3.(l) in
|
||||
Array.mapi (fun k v3_lk ->
|
||||
expo_q_inv.(k) *. f *. v3_lk) v3_l
|
||||
) )
|
||||
| Some result, None -> Some result
|
||||
| Some result, Some v3 ->
|
||||
(Array.iteri (fun l v3_l ->
|
||||
let result_l = result.(l) in
|
||||
Array.iteri (fun k v3_lk ->
|
||||
result_l.(k) <- result_l.(k) +.
|
||||
expo_q_inv.(k) *. f *. v3_lk) v3_l
|
||||
) v3 ; Some result)
|
||||
end
|
||||
in
|
||||
let result =
|
||||
begin
|
||||
match result, trr_v angMom_a cm with
|
||||
| Some result, None -> Some result
|
||||
| Some result, Some v1 ->
|
||||
(Array.iteri (fun l v1_l ->
|
||||
let cpa = (center_pa xyz).(l)
|
||||
and result_l = result.(l)
|
||||
and expo_inv_q_over_p_l = expo_inv_q_over_p.(l)
|
||||
in
|
||||
Array.iteri (fun k v1_lk ->
|
||||
let cqc = (center_qc xyz).(k) in
|
||||
result_l.(k) <- result_l.(k) +.
|
||||
(cqc +. expo_inv_q_over_p_l.(k) *. cpa) *. v1_lk
|
||||
) v1_l
|
||||
) v1 ; Some result)
|
||||
| None, None -> None
|
||||
| None, Some v1 ->
|
||||
Some (Array.init np (fun l ->
|
||||
let v1_l = v1.(l)
|
||||
and cpa = (center_pa xyz).(l)
|
||||
and expo_inv_q_over_p_l = expo_inv_q_over_p.(l)
|
||||
in
|
||||
Array.mapi (fun k v1_lk ->
|
||||
let cqc = (center_qc xyz).(k) in
|
||||
(cqc +. expo_inv_q_over_p_l.(k) *. cpa) *. v1_lk
|
||||
) v1_l
|
||||
) )
|
||||
end
|
||||
in
|
||||
let result =
|
||||
if cmxyz < 0 then result else
|
||||
begin
|
||||
let ap = Po.incr xyz angMom_a in
|
||||
match result, trr_v ap cm with
|
||||
| Some result, None -> Some result
|
||||
| Some result, Some v4 ->
|
||||
(Array.iteri (fun l v4_l ->
|
||||
let result_l = result.(l) in
|
||||
Array.iteri (fun k v4_lk ->
|
||||
let expo_inv_q_over_p_l = expo_inv_q_over_p.(l) in
|
||||
result_l.(k) <- result_l.(k)
|
||||
-. expo_inv_q_over_p_l.(k) *. v4_lk) v4_l
|
||||
) v4 ; Some result)
|
||||
| None, None -> None
|
||||
| None, Some v4 ->
|
||||
Some (Array.init np (fun l ->
|
||||
let v4_l = v4.(l) in
|
||||
let expo_inv_q_over_p_l = expo_inv_q_over_p.(l) in
|
||||
Array.mapi (fun k v4_lk ->
|
||||
-. expo_inv_q_over_p_l.(k) *. v4_lk) v4_l
|
||||
) )
|
||||
end
|
||||
in
|
||||
let result =
|
||||
if axyz < 1 then result else
|
||||
begin
|
||||
let f = 0.5 *. (float_of_int_fast axyz) in
|
||||
let am = Po.decr xyz angMom_a in
|
||||
match result, trr_v am cm with
|
||||
| Some result, None -> Some result
|
||||
| Some result, Some v2 ->
|
||||
(Array.iteri (fun l v2_l ->
|
||||
let result_l = result.(l) in
|
||||
Array.iteri (fun k v2_lk ->
|
||||
result_l.(k) <- result_l.(k) +.
|
||||
expo_q_inv.(k) *. f *. v2_lk) v2_l
|
||||
) v2; Some result)
|
||||
| None, None -> None
|
||||
| None, Some v2 ->
|
||||
Some (Array.init np (fun l ->
|
||||
let v2_l = v2.(l) in
|
||||
Array.mapi (fun k v2_lk ->
|
||||
expo_q_inv.(k) *. f *. v2_lk) v2_l
|
||||
) )
|
||||
end
|
||||
in
|
||||
Zmap.add map_2d.(0) key result;
|
||||
result
|
||||
*)
|
||||
in
|
||||
|
||||
let sum matrix =
|
||||
Array.fold_left (fun accu c -> accu +. Array.fold_left (+.) 0. c) 0. matrix
|
||||
in
|
||||
|
||||
let vrr_v a c =
|
||||
let v =
|
||||
(*
|
||||
if c.Po.tot <> 0 then
|
||||
vrr_v 0 a c
|
||||
else trr_v a c
|
||||
*)
|
||||
vrr_v 0 a c
|
||||
in
|
||||
match v with
|
||||
| Some matrix -> sum matrix
|
||||
| None -> 0.
|
||||
in
|
||||
|
||||
|
||||
(* Horizontal recurrence relations *)
|
||||
let rec hrr0_v angMom_a angMom_b angMom_c =
|
||||
|
||||
match angMom_b.Po.tot with
|
||||
| 0 ->
|
||||
begin
|
||||
match (angMom_a.Po.tot, angMom_c.Po.tot) with
|
||||
| (0,0) -> sum zero_m_array.(0)
|
||||
| (_,_) -> vrr_v angMom_a angMom_c
|
||||
end
|
||||
| 1 ->
|
||||
let xyz = get_xyz angMom_b in
|
||||
let ap = Po.incr xyz angMom_a in
|
||||
let f = Co.get xyz center_ab in
|
||||
let v1 = vrr_v ap angMom_c in
|
||||
if (abs_float f < cutoff) then v1 else
|
||||
let v2 = vrr_v angMom_a angMom_c in
|
||||
v1 +. v2 *. f
|
||||
| _ ->
|
||||
let xyz = get_xyz angMom_b in
|
||||
let bxyz = Po.get xyz angMom_b in
|
||||
if (bxyz < 0) then 0. else
|
||||
let ap = Po.incr xyz angMom_a in
|
||||
let bm = Po.decr xyz angMom_b in
|
||||
let h1 = hrr0_v ap bm angMom_c in
|
||||
let f = Co.get xyz center_ab in
|
||||
if abs_float f < cutoff then h1 else
|
||||
let h2 = hrr0_v angMom_a bm angMom_c in
|
||||
h1 +. h2 *. f
|
||||
|
||||
and hrr_v angMom_a angMom_b angMom_c angMom_d =
|
||||
|
||||
match (angMom_b.Po.tot, angMom_d.Po.tot) with
|
||||
| (_,0) -> if angMom_b.Po.tot = 0 then
|
||||
vrr_v angMom_a angMom_c
|
||||
else
|
||||
hrr0_v angMom_a angMom_b angMom_c
|
||||
| (_,_) ->
|
||||
let xyz = get_xyz angMom_d in
|
||||
let cp = Po.incr xyz angMom_c in
|
||||
let dm = Po.decr xyz angMom_d in
|
||||
let h1 =
|
||||
hrr_v angMom_a angMom_b cp dm
|
||||
in
|
||||
let f = Co.get xyz center_cd in
|
||||
if abs_float f < cutoff then
|
||||
h1
|
||||
else
|
||||
let h2 =
|
||||
hrr_v angMom_a angMom_b angMom_c dm
|
||||
in h1 +. f *. h2
|
||||
in
|
||||
hrr_v angMom_a angMom_b angMom_c angMom_d
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
let contracted_class_shell_pairs ~basis ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
|
||||
|
||||
let sp = Csp.shell_pairs shell_p
|
||||
and sq = Csp.shell_pairs shell_q
|
||||
and cp = Csp.coefficients shell_p
|
||||
and cq = Csp.coefficients shell_q
|
||||
in
|
||||
|
||||
let np, nq =
|
||||
Array.length sp,
|
||||
Array.length sq
|
||||
in
|
||||
|
||||
try
|
||||
match Cspc.make ~cutoff shell_p shell_q with
|
||||
| None -> raise NullQuartet
|
||||
| Some shell_pair_couple ->
|
||||
|
||||
let shell_a = Cspc.shell_a shell_pair_couple
|
||||
and shell_c = Cspc.shell_c shell_pair_couple
|
||||
in
|
||||
|
||||
let maxm = Am.to_int (Cspc.ang_mom shell_pair_couple) in
|
||||
|
||||
|
||||
(* Pre-computation of integral class indices *)
|
||||
let class_indices = Cspc.zkey_array shell_pair_couple in
|
||||
|
||||
let contracted_class =
|
||||
Array.make (Array.length class_indices) 0.;
|
||||
in
|
||||
|
||||
let monocentric =
|
||||
Cspc.monocentric shell_pair_couple
|
||||
in
|
||||
|
||||
(* Compute all integrals in the shell for each pair of significant shell pairs *)
|
||||
|
||||
begin
|
||||
match Cspc.ang_mom shell_pair_couple with
|
||||
| Am.S ->
|
||||
contracted_class.(0) <-
|
||||
begin
|
||||
try
|
||||
let expo_p_inv =
|
||||
Vector.init np (fun ab -> Psp.exponent_inv sp.(ab-1))
|
||||
and expo_q_inv =
|
||||
Vector.init nq (fun cd -> Psp.exponent_inv sq.(cd-1))
|
||||
in
|
||||
|
||||
let coef =
|
||||
Matrix.outer_product (Vector.of_array @@ cq) (Vector.of_array @@ cp)
|
||||
in
|
||||
let coefx = Matrix.to_bigarray coef in
|
||||
|
||||
let zm_array = Matrix.init_cols np nq (fun i j ->
|
||||
try
|
||||
if (abs_float coefx.{j,i} ) < 1.e-3*.cutoff then
|
||||
raise NullQuartet;
|
||||
|
||||
let expo_p_inv, expo_q_inv =
|
||||
expo_p_inv.{i}, expo_q_inv.{j}
|
||||
in
|
||||
|
||||
let center_pq =
|
||||
Co.(Psp.center sp.(i-1) |- Psp.center sq.(j-1))
|
||||
and center_pa =
|
||||
Co.(Psp.center sp.(i-1) |- Cs.center shell_a)
|
||||
and center_qc =
|
||||
Co.(Psp.center sq.(i-1) |- Cs.center shell_c)
|
||||
in
|
||||
let norm_pq_sq =
|
||||
Co.dot center_pq center_pq
|
||||
in
|
||||
|
||||
let zero = Zp.zero basis zero_m in
|
||||
let zero_m_array =
|
||||
zero_m
|
||||
{zero with
|
||||
expo_p_inv ; expo_q_inv ; norm_pq_sq ;
|
||||
center_pq ; center_pa ; center_qc ;
|
||||
}
|
||||
in
|
||||
zero_m_array.(0)
|
||||
with NullQuartet -> 0.
|
||||
)
|
||||
in
|
||||
Matrix.gemm_trace zm_array coef
|
||||
with (Invalid_argument _) -> 0.
|
||||
end
|
||||
| _ ->
|
||||
|
||||
let coef =
|
||||
Array.init np (fun l -> Array.init nq (fun k -> cq.(k) *. cp.(l)) )
|
||||
in
|
||||
|
||||
let norm = Cspc.norm_scales shell_pair_couple in
|
||||
|
||||
let expo_p_inv =
|
||||
Array.map (fun shell_ab -> Psp.exponent_inv shell_ab) sp
|
||||
and expo_q_inv =
|
||||
Array.map (fun shell_cd -> Psp.exponent_inv shell_cd) sq
|
||||
in
|
||||
|
||||
let expo_b =
|
||||
Array.map (fun shell_ab -> Ps.exponent (Psp.shell_b shell_ab) ) sp
|
||||
and expo_d =
|
||||
Array.map (fun shell_cd -> Ps.exponent (Psp.shell_b shell_cd) ) sq
|
||||
in
|
||||
|
||||
let center_pq =
|
||||
let result =
|
||||
Array.init 3 (fun xyz ->
|
||||
Array.init np (fun ab ->
|
||||
let shell_ab = sp.(ab) in
|
||||
Array.init nq (fun cd ->
|
||||
let shell_cd = sq.(cd)
|
||||
in
|
||||
let cpq =
|
||||
Co.(Psp.center shell_ab |- Psp.center shell_cd)
|
||||
in
|
||||
match xyz with
|
||||
| 0 -> Co.get X cpq;
|
||||
| 1 -> Co.get Y cpq;
|
||||
| _ -> Co.get Z cpq;
|
||||
)
|
||||
)
|
||||
)
|
||||
in function
|
||||
| Co.X -> result.(0)
|
||||
| Co.Y -> result.(1)
|
||||
| Co.Z -> result.(2)
|
||||
in
|
||||
let center_pa =
|
||||
let result =
|
||||
Array.init 3 (fun xyz ->
|
||||
Array.init np (fun ab ->
|
||||
let shell_ab = sp.(ab) in
|
||||
let cpa =
|
||||
Co.(Psp.center shell_ab |- Cs.center shell_a)
|
||||
in
|
||||
match xyz with
|
||||
| 0 -> Co.(get X cpa);
|
||||
| 1 -> Co.(get Y cpa);
|
||||
| _ -> Co.(get Z cpa);
|
||||
)
|
||||
)
|
||||
in function
|
||||
| Co.X -> result.(0)
|
||||
| Co.Y -> result.(1)
|
||||
| Co.Z -> result.(2)
|
||||
in
|
||||
let center_qc =
|
||||
let result =
|
||||
Array.init 3 (fun xyz ->
|
||||
Array.init nq (fun cd ->
|
||||
let shell_cd = sq.(cd) in
|
||||
let cqc =
|
||||
Co.(Psp.center shell_cd |- Cs.center shell_c)
|
||||
in
|
||||
match xyz with
|
||||
| 0 -> Co.(get X cqc);
|
||||
| 1 -> Co.(get Y cqc);
|
||||
| _ -> Co.(get Z cqc);
|
||||
)
|
||||
)
|
||||
in function
|
||||
| Co.X -> result.(0)
|
||||
| Co.Y -> result.(1)
|
||||
| Co.Z -> result.(2)
|
||||
in
|
||||
let zero_m_array =
|
||||
let result =
|
||||
Array.init (maxm+1) (fun _ ->
|
||||
Array.init np (fun _ -> Array.make nq 0. ) )
|
||||
in
|
||||
let empty = Array.make (maxm+1) 0. in
|
||||
let center_qc_tmp = Array.init nq (fun cd ->
|
||||
Coordinate.make { Coordinate.
|
||||
x = (center_qc Co.X).(cd) ;
|
||||
y = (center_qc Co.Y).(cd) ;
|
||||
z = (center_qc Co.Z).(cd) ;
|
||||
})
|
||||
in
|
||||
Array.iteri (fun ab _shell_ab ->
|
||||
let center_pa = Coordinate.make { Coordinate.
|
||||
x = (center_pa Co.X).(ab) ;
|
||||
y = (center_pa Co.Y).(ab) ;
|
||||
z = (center_pa Co.Z).(ab) ;
|
||||
}
|
||||
in
|
||||
let zero_m_array_tmp =
|
||||
Array.mapi (fun cd _shell_cd ->
|
||||
if (abs_float coef.(ab).(cd) < cutoff) then
|
||||
empty
|
||||
else
|
||||
let expo_p_inv, expo_q_inv =
|
||||
expo_p_inv.(ab), expo_q_inv.(cd)
|
||||
in
|
||||
let x = (center_pq X).(ab).(cd)
|
||||
and y = (center_pq Y).(ab).(cd)
|
||||
and z = (center_pq Z).(ab).(cd)
|
||||
in
|
||||
let norm_pq_sq =
|
||||
x *. x +. y *. y +. z *. z
|
||||
in
|
||||
let zero = Zp.zero basis zero_m in
|
||||
zero_m {zero with
|
||||
maxm ; expo_p_inv ; expo_q_inv ; norm_pq_sq ;
|
||||
center_pq = Coordinate.make Coordinate.{x ; y ; z} ;
|
||||
center_pa ; center_qc = center_qc_tmp.(cd) ;
|
||||
}
|
||||
) sq
|
||||
in
|
||||
(* Transpose result *)
|
||||
let coef_ab = coef.(ab) in
|
||||
for m=0 to maxm do
|
||||
let result_m_ab = result.(m).(ab)
|
||||
in
|
||||
for cd=0 to nq-1 do
|
||||
result_m_ab.(cd) <- zero_m_array_tmp.(cd).(m) *. coef_ab.(cd)
|
||||
done
|
||||
done
|
||||
) sp;
|
||||
result
|
||||
in
|
||||
|
||||
let map_1d = Zmap.create (4*maxm)
|
||||
and map_2d = Array.init (maxm+1) (fun _ -> Zmap.create (Array.length class_indices))
|
||||
in
|
||||
(* Compute the integral class from the primitive shell quartet *)
|
||||
Array.iteri (fun i key ->
|
||||
let (angMom_a,angMom_b,angMom_c,angMom_d) =
|
||||
match Zkey.to_powers key with
|
||||
| Zkey.Twelve x -> x
|
||||
| _ -> assert false
|
||||
in
|
||||
try
|
||||
if monocentric then
|
||||
begin
|
||||
if ( ((1 land angMom_a.x + angMom_b.x + angMom_c.x + angMom_d.x) =1) ||
|
||||
((1 land angMom_a.y + angMom_b.y + angMom_c.y + angMom_d.y) =1) ||
|
||||
((1 land angMom_a.z + angMom_b.z + angMom_c.z + angMom_d.z) =1)
|
||||
) then
|
||||
raise NullQuartet
|
||||
end;
|
||||
|
||||
(* Schwartz screening *)
|
||||
if (np+nq> 24) then
|
||||
(
|
||||
let schwartz_p =
|
||||
let key = Zkey.of_powers_twelve
|
||||
angMom_a angMom_b angMom_a angMom_b
|
||||
in
|
||||
match schwartz_p with
|
||||
| None -> 1.
|
||||
| Some schwartz_p -> Zmap.find schwartz_p key
|
||||
in
|
||||
if schwartz_p < cutoff then raise NullQuartet;
|
||||
let schwartz_q =
|
||||
let key = Zkey.of_powers_twelve
|
||||
angMom_c angMom_d angMom_c angMom_d
|
||||
in
|
||||
match schwartz_q with
|
||||
| None -> 1.
|
||||
| Some schwartz_q -> Zmap.find schwartz_q key
|
||||
in
|
||||
if schwartz_p *. schwartz_q < cutoff2 then raise NullQuartet;
|
||||
);
|
||||
|
||||
let abcd =
|
||||
{ expo_b ; expo_d ; expo_p_inv ; expo_q_inv ;
|
||||
center_ab = Csp.a_minus_b shell_p;
|
||||
center_cd = Csp.a_minus_b shell_q ;
|
||||
center_pq ; center_pa ;
|
||||
center_qc ; zero_m_array }
|
||||
in
|
||||
|
||||
let integral =
|
||||
hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
|
||||
abcd map_1d map_2d np nq
|
||||
in
|
||||
contracted_class.(i) <- contracted_class.(i) +. integral *. norm.(i)
|
||||
with NullQuartet -> ()
|
||||
) class_indices
|
||||
|
||||
end;
|
||||
|
||||
let result =
|
||||
Zmap.create (Array.length contracted_class)
|
||||
in
|
||||
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
|
||||
result
|
||||
with NullQuartet -> empty
|
||||
|
||||
|
30
gaussian_integrals/lib/zero_m_parameters.ml
Normal file
30
gaussian_integrals/lib/zero_m_parameters.ml
Normal file
@ -0,0 +1,30 @@
|
||||
open Qcaml_common
|
||||
open Qcaml_gaussian_basis
|
||||
|
||||
type t =
|
||||
{
|
||||
expo_p_inv : float ;
|
||||
expo_q_inv : float ;
|
||||
norm_pq_sq : float ;
|
||||
maxm : int ;
|
||||
center_pq : Coordinate.t ;
|
||||
center_pa : Coordinate.t ;
|
||||
center_qc : Coordinate.t ;
|
||||
zero_m_func : t -> float array ;
|
||||
basis : Basis.t ;
|
||||
}
|
||||
|
||||
let zero basis zero_m_func =
|
||||
{
|
||||
zero_m_func ;
|
||||
basis ;
|
||||
maxm=0 ;
|
||||
expo_p_inv = 0.;
|
||||
expo_q_inv = 0.;
|
||||
norm_pq_sq = 0.;
|
||||
center_pq = Coordinate.zero ;
|
||||
center_pa = Coordinate.zero ;
|
||||
center_qc = Coordinate.zero ;
|
||||
}
|
||||
|
||||
|
@ -108,6 +108,10 @@ let gemm ?m ?n ?k ?beta ?c ?(transa=`N) ?(alpha=1.0) a ?(transb=`N) b =
|
||||
in
|
||||
gemm ?m ?n ?k ?beta ?c ~transa ~alpha a ~transb b
|
||||
|
||||
|
||||
let gemm_trace ?(transa=`N) a ?(transb=`N) b =
|
||||
Mat.gemm_trace ~transa a ~transb b
|
||||
|
||||
let init_cols = Mat.init_cols
|
||||
|
||||
let of_col_vecs a =
|
||||
@ -173,6 +177,13 @@ let sysv ~b a =
|
||||
let debug_matrix name a =
|
||||
Format.printf "@[%s =\n@[%a@]@]@." name pp a
|
||||
|
||||
let outer_product_inplace m ?(alpha=1.0) u v =
|
||||
ger ~alpha (Vector.to_bigarray u) (Vector.to_bigarray v) m
|
||||
|
||||
let outer_product ?(alpha=1.0) u v =
|
||||
let m = make0 (Vector.dim u) (Vector.dim v) in
|
||||
outer_product_inplace m ~alpha u v;
|
||||
m
|
||||
|
||||
let matrix_of_file filename =
|
||||
let ic = Scanf.Scanning.open_in filename in
|
||||
|
@ -140,18 +140,29 @@ val scale_cols_inplace: t -> Vector.t -> unit
|
||||
val sycon: t -> float
|
||||
(** Returns the condition number of a matrix *)
|
||||
|
||||
val outer_product : ?alpha:float -> Vector.t -> Vector.t -> t
|
||||
(** Computes M = %{ $\alpha u.v^t$ %} *)
|
||||
|
||||
val outer_product_inplace : t -> ?alpha:float -> Vector.t -> Vector.t -> unit
|
||||
(** Computes M = %{ $\alpha u.v^t$ %} *)
|
||||
|
||||
val gemm_inplace : ?m:int -> ?n:int -> ?k:int -> ?beta:float -> c:t -> ?transa:[`N | `T] -> ?alpha:float ->
|
||||
t -> ?transb:[`N | `T] -> t -> unit
|
||||
(** Performs the Lapack DGEMM operation. Default values:
|
||||
(** Performs the Lapack GEMM operation. Default values:
|
||||
[beta=0.] [transa=`N] [alpha=1.0] [transb=`N].
|
||||
[gemm ~beta c ~alpha a b]: %{ $C = \beta C + \alpha A B$ *)
|
||||
|
||||
val gemm: ?m:int -> ?n:int -> ?k:int -> ?beta:float -> ?c:t -> ?transa:[`N | `T] -> ?alpha:float ->
|
||||
t -> ?transb:[`N | `T] -> t -> t
|
||||
(** Performs the Lapack DGEMM operation. Default values:
|
||||
(** Performs the Lapack GEMM operation. Default values:
|
||||
[beta=0.] [transa=`N] [alpha=1.0] [transb=`N]
|
||||
[gemm ~beta ~alpha a b]: %{ $C = \beta C + \alpha A B$ *)
|
||||
|
||||
val gemm_trace: ?transa:[`N | `T] -> t -> ?transb:[`N | `T] -> t -> float
|
||||
(** Computes the trace of a GEMM. Default values:
|
||||
[transa=`N] [transb=`N]
|
||||
[gemm_trace a b]: %{ $C = Tr(A B)$ *)
|
||||
|
||||
val svd: t -> t * Vector.t * t
|
||||
(** Singular value decomposition. *)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user