Added functor for Two-electron integrals

This commit is contained in:
Anthony Scemama 2019-03-08 17:47:58 +01:00
parent c9c039c2fe
commit 6d78d155f4
6 changed files with 386 additions and 612 deletions

View File

@ -1,336 +1,35 @@
(** Electron-electron repulsion integrals *)
open Util
open Constants
open Util
include FourIdxStorage
module Zm = struct
let name = "Electron repulsion integrals"
module Am = AngularMomentum
module As = AtomicShell
module Asp = AtomicShellPair
module Bs = Basis
module Cs = ContractedShell
module Csp = ContractedShellPair
module Cspc = ContractedShellPairCouple
module Fis = FourIdxStorage
let cutoff = integrals_cutoff
(** (00|00)^m : Fundamental electron repulsion integral
$ \int \int \phi_p(r1) 1/r_{12} \phi_q(r2) dr_1 dr_2 $
maxm : Maximum total angular momentum
expo_pq_inv : $1./p + 1./q$ where $p$ and $q$ are the exponents of
$\phi_p$ and $\phi_q$
norm_pq_sq : square of the distance between the centers of $\phi_p$
and $\phi_q$
*)
let zero_m ~maxm ~expo_pq_inv ~norm_pq_sq =
assert (expo_pq_inv <> 0.);
let norm_pq_sq =
if norm_pq_sq > integrals_cutoff then norm_pq_sq else 0.
in
let exp_pq = 1. /. expo_pq_inv in
let t = norm_pq_sq *. exp_pq in
let f = two_over_sq_pi *. (sqrt exp_pq) in
let result = boys_function ~maxm t in
let rec aux accu k = function
| 0 -> result.(k) <- result.(k) *. accu
| l ->
begin
result.(k) <- result.(k) *. accu;
let new_accu = -. accu *. exp_pq in
aux new_accu (k+1) (l-1)
end
in
aux f 0 maxm;
result
let class_of_contracted_shell_pair_couple shell_pair_couple =
let shell_p = Cspc.shell_pair_p shell_pair_couple
and shell_q = Cspc.shell_pair_q shell_pair_couple
in
if Array.length (Csp.shell_pairs shell_p) + (Array.length (Csp.shell_pairs shell_q)) < 4 then
TwoElectronRR.contracted_class_shell_pair_couple ~zero_m shell_pair_couple
else
TwoElectronRRVectorized.contracted_class_shell_pairs ~zero_m shell_p shell_q
let filter_contracted_shell_pairs ?(cutoff=integrals_cutoff) shell_pairs =
List.map (fun pair ->
match Cspc.make ~cutoff pair pair with
| Some cspc ->
let cls = class_of_contracted_shell_pair_couple cspc in
(pair, Zmap.fold (fun key value accu -> max (abs_float value) accu) cls 0. )
(* TODO \sum_k |coef_k * integral_k| *)
| None -> (pair, -1.)
) shell_pairs
|> List.filter (fun (_, schwartz_p_max) -> schwartz_p_max >= cutoff)
|> List.map fst
(* TODO
let filter_contracted_shell_pair_couples ?(cutoff=integrals_cutoff) shell_pair_couples =
List.map (fun pair ->
let cls =
class_of_contracted_shell_pairs pair pair
in
(pair, Zmap.fold (fun key value accu -> max (abs_float value) accu) cls 0. )
) shell_pairs
|> List.filter (fun (_, schwartz_p_max) -> schwartz_p_max >= cutoff)
|> List.map fst
*)
let store_class ?(cutoff=integrals_cutoff) data contracted_shell_pair_couple cls =
let to_powers x =
let open Zkey in
match to_powers x with
| Three x -> x
| _ -> assert false
in
let shell_p = Cspc.shell_pair_p contracted_shell_pair_couple
and shell_q = Cspc.shell_pair_q contracted_shell_pair_couple
in
Array.iteri (fun i_c powers_i ->
let i_c = Cs.index (Csp.shell_a shell_p) + i_c + 1 in
let xi = to_powers powers_i in
Array.iteri (fun j_c powers_j ->
let j_c = Cs.index (Csp.shell_b shell_p) + j_c + 1 in
let xj = to_powers powers_j in
Array.iteri (fun k_c powers_k ->
let k_c = Cs.index (Csp.shell_a shell_q) + k_c + 1 in
let xk = to_powers powers_k in
Array.iteri (fun l_c powers_l ->
let l_c = Cs.index (Csp.shell_b shell_q) + l_c + 1 in
let xl = to_powers powers_l in
let key = Zkey.of_powers_twelve xi xj xk xl in
let value = Zmap.find cls key in
set_chem data i_c j_c k_c l_c value
) (Cs.zkey_array (Csp.shell_b shell_q))
) (Cs.zkey_array (Csp.shell_a shell_q))
) (Cs.zkey_array (Csp.shell_b shell_p))
) (Cs.zkey_array (Csp.shell_a shell_p))
let of_basis_serial basis =
let n = Bs.size basis
and shell = Bs.contracted_shells basis
in
let eri_array =
Fis.create ~size:n `Dense
(*
Fis.create ~size:n `Sparse
*)
in
let t0 = Unix.gettimeofday () in
let shell_pairs =
Csp.of_contracted_shell_array shell
|> filter_contracted_shell_pairs ~cutoff
in
Printf.printf "%d significant shell pairs computed in %f seconds\n"
(List.length shell_pairs) (Unix.gettimeofday () -. t0);
let t0 = Unix.gettimeofday () in
let ishell = ref 0 in
List.iter (fun shell_p ->
let () =
if (Cs.index (Csp.shell_a shell_p) > !ishell) then
(ishell := Cs.index (Csp.shell_a shell_p) ; print_int !ishell ; print_newline ())
in
let sp =
Csp.shell_pairs shell_p
in
try
List.iter (fun shell_q ->
let () =
if Cs.index (Csp.shell_a shell_q) >
Cs.index (Csp.shell_a shell_p) then
raise Exit
in
let sq = Csp.shell_pairs shell_q in
let cspc =
if Array.length sp < Array.length sq then
Cspc.make ~cutoff shell_p shell_q
else
Cspc.make ~cutoff shell_q shell_p
in
match cspc with
| Some cspc ->
let cls =
class_of_contracted_shell_pair_couple cspc
in
store_class ~cutoff eri_array cspc cls
| None -> ()
) shell_pairs
with Exit -> ()
) shell_pairs ;
Printf.printf "Computed ERIs in %f seconds\n%!" (Unix.gettimeofday () -. t0);
eri_array
(* Parallel functions *)
let of_basis_parallel basis =
let n = Bs.size basis
and shell = Bs.contracted_shells basis
in
let store_class_parallel
?(cutoff=integrals_cutoff) contracted_shell_pair_couple cls =
let to_powers x =
let open Zkey in
match to_powers x with
| Three x -> x
| _ -> assert false
let zero_m ~maxm ~expo_pq_inv ~norm_pq_sq =
assert (expo_pq_inv <> 0.);
let norm_pq_sq =
if norm_pq_sq > integrals_cutoff then norm_pq_sq else 0.
in
let shell_p = Cspc.shell_pair_p contracted_shell_pair_couple
and shell_q = Cspc.shell_pair_q contracted_shell_pair_couple
let exp_pq = 1. /. expo_pq_inv in
let t = norm_pq_sq *. exp_pq in
let f = two_over_sq_pi *. (sqrt exp_pq) in
let result = boys_function ~maxm t in
let rec aux accu k = function
| 0 -> result.(k) <- result.(k) *. accu
| l ->
begin
result.(k) <- result.(k) *. accu;
let new_accu = -. accu *. exp_pq in
aux new_accu (k+1) (l-1)
end
in
aux f 0 maxm;
result
let result = ref [] in
Array.iteri (fun i_c powers_i ->
let i_c = Cs.index (Csp.shell_a shell_p) + i_c + 1 in
let xi = to_powers powers_i in
Array.iteri (fun j_c powers_j ->
let j_c = Cs.index (Csp.shell_b shell_p) + j_c + 1 in
let xj = to_powers powers_j in
Array.iteri (fun k_c powers_k ->
let k_c = Cs.index (Csp.shell_a shell_q) + k_c + 1 in
let xk = to_powers powers_k in
Array.iteri (fun l_c powers_l ->
let l_c = Cs.index (Csp.shell_b shell_q) + l_c + 1 in
let xl = to_powers powers_l in
let key = Zkey.of_powers_twelve xi xj xk xl in
let value = Zmap.find cls key in
result := (i_c, j_c, k_c, l_c, value) :: !result
) (Cs.zkey_array (Csp.shell_b shell_q))
) (Cs.zkey_array (Csp.shell_a shell_q))
) (Cs.zkey_array (Csp.shell_b shell_p))
) (Cs.zkey_array (Csp.shell_a shell_p));
!result
in
let t0 = Unix.gettimeofday () in
let shell_pairs =
Csp.of_contracted_shell_array shell
|> filter_contracted_shell_pairs ~cutoff
in
if Parallel.master then
Printf.printf "%d significant shell pairs computed in %f seconds\n"
(List.length shell_pairs) (Unix.gettimeofday () -. t0);
let t0 = Unix.gettimeofday () in
let ishell = ref max_int in
let input_stream = Stream.of_list (List.rev shell_pairs) in
let f shell_p =
let () =
if Parallel.rank < 2 && Cs.index (Csp.shell_a shell_p) < !ishell then
(ishell := Cs.index (Csp.shell_a shell_p) ; print_int !ishell ; print_newline ())
in
let sp =
Csp.shell_pairs shell_p
in
let result = ref [] in
try
List.iter (fun shell_q ->
let () =
if Cs.index (Csp.shell_a shell_q) >
Cs.index (Csp.shell_a shell_p) then
raise Exit
in
let sq = Csp.shell_pairs shell_q in
let cspc =
if Array.length sp < Array.length sq then
Cspc.make ~cutoff shell_p shell_q
else
Cspc.make ~cutoff shell_q shell_p
in
match cspc with
| Some cspc ->
let cls =
class_of_contracted_shell_pair_couple cspc
in
result := (store_class_parallel ~cutoff cspc cls) :: !result;
| None -> ()
) shell_pairs;
raise Exit
with Exit -> List.concat !result |> Array.of_list
in
let eri_array =
if Parallel.master then
Fis.create ~size:n `Dense
else
Fis.create ~size:0 `Dense
in
Farm.run ~ordered:false ~f input_stream
|> Stream.iter (fun l ->
Array.iter (fun (i_c,j_c,k_c,l_c,value) ->
set_chem eri_array i_c j_c k_c l_c value) l);
if Parallel.master then
Printf.printf "Computed ERIs in parallel in %f seconds\n%!" (Unix.gettimeofday () -. t0);
Parallel.broadcast (lazy eri_array)
let of_basis =
match Parallel.size with
| 1 -> of_basis_serial
| _ -> of_basis_parallel
end
module M = TwoElectronIntegrals.Make(Zm)
include M

View File

@ -1,19 +0,0 @@
(** Electron repulsion intergals. *)
include module type of FourIdxStorage
(*
val filter_atomic_shell_pairs : ?cutoff:float -> AtomicShellPair.t list -> AtomicShellPair.t list
(** Uses Schwartz screening on atomic shell pairs. *)
*)
val filter_contracted_shell_pairs : ?cutoff:float -> ContractedShellPair.t list -> ContractedShellPair.t list
(** Uses Schwartz screening on contracted shell pairs. *)
val class_of_contracted_shell_pair_couple : ContractedShellPairCouple.t -> float Zmap.t
(** Computes all the ERI of the class built from a couple of contracted shell pairs. *)
val of_basis : Basis.t -> t
(** Compute all ERI's for a given {!Basis.t}. *)

View File

@ -1,267 +0,0 @@
(** Electron-electron repulsion integrals *)
open Util
open Constants
open Bigarray
type t = (float, float32_elt, fortran_layout) Genarray.t
(* Input type *)
type input_data =
{
i : int;
j : int;
shell_pairs : ContractedShellPair.t array array ;
schwartz : (float Zmap.t * float) array array;
cutoff : float
}
(* Output type *)
type output_integral = (* <ij|kl> *)
{
i1 : int ; (* Function i for electron 1 *)
j2 : int ; (* Function j for electron 2 *)
k1 : int ; (* Function k for electron 1 *)
l2 : int ; (* Function l for electron 2 *)
swap : bool ; (* If true, Compute (kl|ij) instead of (ij|kl) *)
cls : float Zmap.t;
}
type output_data = output_integral list
(** (00|00)^m : Fundamental electron repulsion integral
$ \int \int \phi_p(r1) 1/r_{12} \phi_q(r2) dr_1 dr_2 $
maxm : Maximum total angular momentum
expo_pq_inv : $1./p + 1/q$ where $p$ and $q$ are the exponents of
$\phi_p$ and $\phi_q$
norm_pq_sq : square of the distance between the centers of $\phi_p$
and $\phi_q$
*)
let zero_m ~maxm ~expo_pq_inv ~norm_pq_sq =
let exp_pq = 1. /. expo_pq_inv in
let t = norm_pq_sq *. exp_pq in
let f = two_over_sq_pi *. (sqrt exp_pq) in
let result = boys_function ~maxm t in
let rec aux accu k = function
| 0 -> result.(k) <- result.(k) *. accu
| l ->
begin
result.(k) <- result.(k) *. accu;
let new_accu = -. accu *. exp_pq in
aux new_accu (k+1) (l-1)
end
in
aux f 0 maxm;
result
(** Compute all the integrals of a contracted class *)
let contracted_class_shell_pairs ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
TwoElectronRR.contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
(** Compute all the integrals of a contracted class *)
let contracted_class_shell_pairs_vec ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
TwoElectronRRVectorized.contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
(** Compute all the integrals of an atomic shell pair couple *)
let contracted_class_atomic_shell_pairs ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
TwoElectronRR.contracted_class_atomic_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
(** Compute all the integrals of a contracted class *)
let contracted_class_atomic_shell_pairs_vec ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
TwoElectronRR.contracted_class_atomic_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
(** Creates the input data structure from the basis set. *)
let make_input basis =
let shell = Basis.contracted_shells basis in
(* Pre-compute all shell pairs *)
let shell_pairs =
ContractedShellPair.shell_pairs shell
in
(* Pre-compute diagonal integrals for Schwartz screening *)
let t0 = Unix.gettimeofday () in
let schwartz =
Array.map (fun pair_array ->
Array.map (fun pair ->
let cls = contracted_class_shell_pairs pair pair in
let m = Zmap.fold (fun _ value accu ->
max (abs_float value) accu) cls 0.
in (cls, m)
) pair_array
) shell_pairs
in
(* Count number of significant shell pairs. *)
let icount = ref 0 in
for i=0 to (Array.length shell) - 1 do
print_int (Contracted_shell.index shell.(i)) ; print_newline ();
for j=0 to i do
let schwartz_p, schwartz_p_max = schwartz.(i).(j) in
if (schwartz_p_max >= cutoff) then
icount := !icount + 1;
done;
done;
Printf.printf "%d shell pairs computed in %f seconds\n" !icount (Unix.gettimeofday () -. t0);
List.init (Array.length shell) (fun i ->
List.init (i+1) (fun j ->
{ i ; j ; shell_pairs ; schwartz ; cutoff } ) )
|> List.fold_left List.rev_append []
exception NullIntegral
let slave_job { i ; j ; shell_pairs ; schwartz ; cutoff} =
let shell_p = shell_pairs.(i).(j) in
let schwartz_p, schwartz_p_max = schwartz.(i).(j) in
if schwartz_p_max < cutoff then [] else
let schwartz_cutoff = cutoff *. cutoff in
let sp = shell_p.ContractedShellPair.shell_pairs in
let f k l =
let schwartz_q, schwartz_q_max = schwartz.(k).(l) in
if schwartz_p_max *. schwartz_q_max < schwartz_cutoff then
raise NullIntegral;
let shell_q = shell_pairs.(k).(l) in
let sq = shell_q.ContractedShellPair.shell_pairs in
let swap = Array.length sp > Array.length sq in
(* Compute all the integrals of the class *)
let cls =
if swap then
if Array.length sp + Array.length sq = 2 then
contracted_class_shell_pairs ~schwartz_p:schwartz_q ~schwartz_q:schwartz_p shell_q shell_p
else
contracted_class_shell_pairs_vec ~schwartz_p:schwartz_q ~schwartz_q:schwartz_p shell_q shell_p
else
if Array.length sp + Array.length sq = 2 then
contracted_class_shell_pairs ~schwartz_p ~schwartz_q shell_p shell_q
else
contracted_class_shell_pairs_vec ~schwartz_p ~schwartz_q shell_p shell_q
in
{ i1=i ; j2=k ; k1=j ; l2=l ; swap ; cls }
in
let rec loop accu k l =
match k, l with
| -1, -1 -> accu
| k, -1 -> loop accu (k-1) (k-1)
| k, l ->
let new_accu =
let _, schwartz_q_max = schwartz.(k).(l) in
if schwartz_p_max *. schwartz_q_max > schwartz_cutoff then
f k l :: accu
else accu
in
loop new_accu k (l-1)
in
loop [] i i
let of_basis basis =
let shell = Basis.contracted_shells basis in
(* 4D data initialization *)
let eri_array =
let n = Basis.size basis in
Genarray.create Float32 fortran_layout [| n ; n ; n ; n|]
in
Genarray.fill eri_array 0.;
(* Compute ERIs *)
let to_int_tuple x =
let open Zkey in
match to_int_tuple Kind_3 x with
| Three x -> x
| _ -> assert false
in
let t0 = Unix.gettimeofday () in
let inn = ref 0 in
let out = ref 0 in
make_input basis
|> List.map slave_job
|> List.iter (fun output_ij ->
List.iter (fun { i1=i ; j2=k ; k1=j ; l2=l ; swap ; cls } ->
Array.iteri (fun i_c powers_i ->
let i_c = (Contracted_shell.index shell.(i)) + i_c + 1 in
let xi = to_int_tuple powers_i in
Array.iteri (fun j_c powers_j ->
let j_c = (Contracted_shell.index shell.(j)) + j_c + 1 in
let xj = to_int_tuple powers_j in
Array.iteri (fun k_c powers_k ->
let k_c = (Contracted_shell.index shell.(k)) + k_c + 1 in
let xk = to_int_tuple powers_k in
Array.iteri (fun l_c powers_l ->
let l_c = (Contracted_shell.index shell.(l)) + l_c + 1 in
let xl = to_int_tuple powers_l in
let key =
if swap then
Zkey.of_int_tuple (Zkey.Twelve (xk,xl,xi,xj))
else
Zkey.of_int_tuple (Zkey.Twelve (xi,xj,xk,xl))
in
let value =
Zmap.find cls key
in
eri_array.{i_c,k_c,j_c,l_c} <- value;
eri_array.{j_c,k_c,i_c,l_c} <- value;
eri_array.{i_c,l_c,j_c,k_c} <- value;
eri_array.{j_c,l_c,i_c,k_c} <- value;
eri_array.{k_c,i_c,l_c,j_c} <- value;
eri_array.{k_c,j_c,l_c,i_c} <- value;
eri_array.{l_c,i_c,k_c,j_c} <- value;
eri_array.{l_c,j_c,k_c,i_c} <- value;
if (abs_float value > cutoff) then
(inn := !inn + 1;
)
else
out := !out + 1;
) (Contracted_shell.powers shell.(l))
) (Contracted_shell.powers shell.(k))
) (Contracted_shell.powers shell.(j))
) (Contracted_shell.powers shell.(i));
) output_ij
);
Printf.printf "In: %d Out:%d\n" !inn !out ;
Printf.printf "Computed ERIs in %f seconds\n%!" (Unix.gettimeofday () -. t0);
eri_array
(** Write all integrals to a file with the <ij|kl> convention *)
let to_file ~filename eri_array =
let oc = open_out filename in
(* Print ERIs *)
for l_c=1 to (Genarray.nth_dim eri_array 3) do
for k_c=1 to l_c do
for j_c=1 to l_c do
for i_c=1 to k_c do
let value = eri_array.{i_c,j_c,k_c,l_c} in
if (abs_float value > cutoff) then
Printf.fprintf oc " %5d %5d %5d %5d%20.15f\n" i_c j_c k_c l_c value;
done;
done;
done;
done;
close_out oc

View File

@ -0,0 +1,314 @@
(** Two electron integral functor, parameterized by the zero_m function.
*)
open Constants
let cutoff = integrals_cutoff
module Am = AngularMomentum
module As = AtomicShell
module Asp = AtomicShellPair
module Bs = Basis
module Cs = ContractedShell
module Csp = ContractedShellPair
module Cspc = ContractedShellPairCouple
module Fis = FourIdxStorage
module type Zero_mType =
sig
val name : string
val zero_m : maxm:int -> expo_pq_inv:float -> norm_pq_sq:float -> float array
end
module Make(Zero_m : Zero_mType) = struct
include FourIdxStorage
let zero_m = Zero_m.zero_m
let class_of_contracted_shell_pair_couple shell_pair_couple =
let shell_p = Cspc.shell_pair_p shell_pair_couple
and shell_q = Cspc.shell_pair_q shell_pair_couple
in
if Array.length (Csp.shell_pairs shell_p) +
(Array.length (Csp.shell_pairs shell_q)) < 4 then
TwoElectronRR.contracted_class_shell_pair_couple
~zero_m shell_pair_couple
else
TwoElectronRRVectorized.contracted_class_shell_pairs
~zero_m shell_p shell_q
let filter_contracted_shell_pairs ?(cutoff=integrals_cutoff) shell_pairs =
List.map (fun pair ->
match Cspc.make ~cutoff pair pair with
| Some cspc ->
let cls = class_of_contracted_shell_pair_couple cspc in
(pair, Zmap.fold (fun key value accu -> max (abs_float value) accu) cls 0. )
(* TODO \sum_k |coef_k * integral_k| *)
| None -> (pair, -1.)
) shell_pairs
|> List.filter (fun (_, schwartz_p_max) -> schwartz_p_max >= cutoff)
|> List.map fst
(* TODO
let filter_contracted_shell_pair_couples
?(cutoff=integrals_cutoff) shell_pair_couples =
List.map (fun pair ->
let cls =
class_of_contracted_shell_pairs pair pair
in
(pair, Zmap.fold (fun key value accu -> max (abs_float value) accu) cls 0. )
) shell_pairs
|> List.filter (fun (_, schwartz_p_max) -> schwartz_p_max >= cutoff)
|> List.map fst
*)
let store_class ?(cutoff=integrals_cutoff) data contracted_shell_pair_couple cls =
let to_powers x =
let open Zkey in
match to_powers x with
| Three x -> x
| _ -> assert false
in
let shell_p = Cspc.shell_pair_p contracted_shell_pair_couple
and shell_q = Cspc.shell_pair_q contracted_shell_pair_couple
in
Array.iteri (fun i_c powers_i ->
let i_c = Cs.index (Csp.shell_a shell_p) + i_c + 1 in
let xi = to_powers powers_i in
Array.iteri (fun j_c powers_j ->
let j_c = Cs.index (Csp.shell_b shell_p) + j_c + 1 in
let xj = to_powers powers_j in
Array.iteri (fun k_c powers_k ->
let k_c = Cs.index (Csp.shell_a shell_q) + k_c + 1 in
let xk = to_powers powers_k in
Array.iteri (fun l_c powers_l ->
let l_c = Cs.index (Csp.shell_b shell_q) + l_c + 1 in
let xl = to_powers powers_l in
let key = Zkey.of_powers_twelve xi xj xk xl in
let value = Zmap.find cls key in
set_chem data i_c j_c k_c l_c value
) (Cs.zkey_array (Csp.shell_b shell_q))
) (Cs.zkey_array (Csp.shell_a shell_q))
) (Cs.zkey_array (Csp.shell_b shell_p))
) (Cs.zkey_array (Csp.shell_a shell_p))
let of_basis_serial basis =
let n = Bs.size basis
and shell = Bs.contracted_shells basis
in
let eri_array =
Fis.create ~size:n `Dense
(*
Fis.create ~size:n `Sparse
*)
in
let t0 = Unix.gettimeofday () in
let shell_pairs =
Csp.of_contracted_shell_array shell
|> filter_contracted_shell_pairs ~cutoff
in
Printf.printf "%d significant shell pairs computed in %f seconds\n"
(List.length shell_pairs) (Unix.gettimeofday () -. t0);
let t0 = Unix.gettimeofday () in
let ishell = ref 0 in
List.iter (fun shell_p ->
let () =
if (Cs.index (Csp.shell_a shell_p) > !ishell) then
(ishell := Cs.index (Csp.shell_a shell_p) ; print_int !ishell ; print_newline ())
in
let sp =
Csp.shell_pairs shell_p
in
try
List.iter (fun shell_q ->
let () =
if Cs.index (Csp.shell_a shell_q) >
Cs.index (Csp.shell_a shell_p) then
raise Exit
in
let sq = Csp.shell_pairs shell_q in
let cspc =
if Array.length sp < Array.length sq then
Cspc.make ~cutoff shell_p shell_q
else
Cspc.make ~cutoff shell_q shell_p
in
match cspc with
| Some cspc ->
let cls =
class_of_contracted_shell_pair_couple cspc
in
store_class ~cutoff eri_array cspc cls
| None -> ()
) shell_pairs
with Exit -> ()
) shell_pairs ;
Printf.printf "Computed ERIs in %f seconds\n%!" (Unix.gettimeofday () -. t0);
eri_array
(* Parallel functions *)
let of_basis_parallel basis =
let n = Bs.size basis
and shell = Bs.contracted_shells basis
in
let store_class_parallel
?(cutoff=integrals_cutoff) contracted_shell_pair_couple cls =
let to_powers x =
let open Zkey in
match to_powers x with
| Three x -> x
| _ -> assert false
in
let shell_p = Cspc.shell_pair_p contracted_shell_pair_couple
and shell_q = Cspc.shell_pair_q contracted_shell_pair_couple
in
let result = ref [] in
Array.iteri (fun i_c powers_i ->
let i_c = Cs.index (Csp.shell_a shell_p) + i_c + 1 in
let xi = to_powers powers_i in
Array.iteri (fun j_c powers_j ->
let j_c = Cs.index (Csp.shell_b shell_p) + j_c + 1 in
let xj = to_powers powers_j in
Array.iteri (fun k_c powers_k ->
let k_c = Cs.index (Csp.shell_a shell_q) + k_c + 1 in
let xk = to_powers powers_k in
Array.iteri (fun l_c powers_l ->
let l_c = Cs.index (Csp.shell_b shell_q) + l_c + 1 in
let xl = to_powers powers_l in
let key = Zkey.of_powers_twelve xi xj xk xl in
let value = Zmap.find cls key in
result := (i_c, j_c, k_c, l_c, value) :: !result
) (Cs.zkey_array (Csp.shell_b shell_q))
) (Cs.zkey_array (Csp.shell_a shell_q))
) (Cs.zkey_array (Csp.shell_b shell_p))
) (Cs.zkey_array (Csp.shell_a shell_p));
!result
in
let t0 = Unix.gettimeofday () in
let shell_pairs =
Csp.of_contracted_shell_array shell
|> filter_contracted_shell_pairs ~cutoff
in
if Parallel.master then
Printf.printf "%d significant shell pairs computed in %f seconds\n"
(List.length shell_pairs) (Unix.gettimeofday () -. t0);
let t0 = Unix.gettimeofday () in
let ishell = ref max_int in
let input_stream = Stream.of_list (List.rev shell_pairs) in
let f shell_p =
let () =
if Parallel.rank < 2 && Cs.index (Csp.shell_a shell_p) < !ishell then
(ishell := Cs.index (Csp.shell_a shell_p) ; print_int !ishell ; print_newline ())
in
let sp =
Csp.shell_pairs shell_p
in
let result = ref [] in
try
List.iter (fun shell_q ->
let () =
if Cs.index (Csp.shell_a shell_q) >
Cs.index (Csp.shell_a shell_p) then
raise Exit
in
let sq = Csp.shell_pairs shell_q in
let cspc =
if Array.length sp < Array.length sq then
Cspc.make ~cutoff shell_p shell_q
else
Cspc.make ~cutoff shell_q shell_p
in
match cspc with
| Some cspc ->
let cls =
class_of_contracted_shell_pair_couple cspc
in
result := (store_class_parallel ~cutoff cspc cls) :: !result;
| None -> ()
) shell_pairs;
raise Exit
with Exit -> List.concat !result |> Array.of_list
in
let eri_array =
if Parallel.master then
Fis.create ~size:n `Dense
else
Fis.create ~size:0 `Dense
in
Farm.run ~ordered:false ~f input_stream
|> Stream.iter (fun l ->
Array.iter (fun (i_c,j_c,k_c,l_c,value) ->
set_chem eri_array i_c j_c k_c l_c value) l);
if Parallel.master then
Printf.printf
"Computed %s Integrals in parallel in %f seconds\n%!" Zero_m.name (Unix.gettimeofday () -. t0);
Parallel.broadcast (lazy eri_array)
let of_basis =
match Parallel.size with
| 1 -> of_basis_serial
| _ -> of_basis_parallel
end

View File

@ -0,0 +1,47 @@
(** Two-electron integrals with an arbitrary operator, with a functorial interface
parameterized by the fundamental two-electron integrals.
{% $(00|00)^m = \int \int \phi_p(r1) \hat{O} \phi_q(r2) dr_1 dr_2 $ %} : Fundamental two-electron integral
*)
module type Zero_mType =
sig
val name : string
(** Name of the kind of integrals, for printing purposes. *)
val zero_m : maxm:int -> expo_pq_inv:float -> norm_pq_sq:float -> float array
(** The returned float array contains all the {% $(00|00)^m$ %} values, where
[m] is the index of the array.
- [maxm] : Maximum total angular momentum
- [expo_pq_inv] : {% $1/p + 1/q$ %} where {% $p$ %} and {% $q$ %} are the
exponents of {% $\phi_p$ %} and {% $\phi_q$ %}
- [norm_pq_sq] : square of the distance between the centers of
{% $\phi_p$ %} and {% $\phi_q$ %}
*)
end
module Make : functor (Zero_m : Zero_mType) ->
sig
include module type of FourIdxStorage
val class_of_contracted_shell_pair_couple :
ContractedShellPairCouple.t -> float Zmap.t
(** Computes all the ERI of the class built from a couple of
contracted shell pairs. *)
val filter_contracted_shell_pairs :
?cutoff:float ->
ContractedShellPair.t list -> ContractedShellPair.t list
(** Uses Schwartz screening on contracted shell pairs. *)
val of_basis : Basis.t -> t
(** Compute all ERI's for a given {!Basis.t}. *)
end

View File

@ -49,7 +49,7 @@ doc: QCaml.odocl
$(OCAMLBUILD) -ocamlc ocamlcp $*.byte -use-ocamlfind $(PKGS)
clean:
rm QCaml.odocl && $(OCAMLBUILD) -clean
rm -f QCaml.odocl && $(OCAMLBUILD) -clean
debug: run_integrals.native
./debug.sh