10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2025-01-03 01:55:40 +01:00

Primitive Shell

This commit is contained in:
Anthony Scemama 2018-03-14 16:22:08 +01:00
parent da68c4f187
commit 6a62b28145
6 changed files with 173 additions and 84 deletions

View File

@ -6,6 +6,7 @@ type t =
module Cs = ContractedShell module Cs = ContractedShell
module Gb = GeneralBasis module Gb = GeneralBasis
module Ps = PrimitiveShell
(** Returns an array of the basis set per atom *) (** Returns an array of the basis set per atom *)
@ -14,12 +15,11 @@ let of_nuclei_and_general_basis n b =
Array.map (fun (e, center) -> Array.map (fun (e, center) ->
List.assoc e b List.assoc e b
|> Array.map (fun (totAngMom, shell) -> |> Array.map (fun (totAngMom, shell) ->
let expo = Array.map (fun Gb.{exponent ; coefficient} -> let lc =
exponent) shell Array.map (fun Gb.{exponent ; coefficient} ->
and coef = Array.map (fun Gb.{exponent ; coefficient} -> coefficient, Ps.make totAngMom center exponent) shell
coefficient) shell
in in
Cs.make ~expo ~coef ~totAngMom ~center ~index:0) Cs.make lc)
) n ) n
|> Array.to_list |> Array.to_list
|> Array.concat |> Array.concat

View File

@ -7,59 +7,46 @@ type t = {
coef : float array; (** Array of contraction coefficients {% $d_i$ %} *) coef : float array; (** Array of contraction coefficients {% $d_i$ %} *)
center : Coordinate.t; (** Coordinate of the center {% $\mathbf{A} = (X_A,Y_A,Z_A)$ %} *) center : Coordinate.t; (** Coordinate of the center {% $\mathbf{A} = (X_A,Y_A,Z_A)$ %} *)
totAngMom : AngularMomentum.t; (** Total angular momentum : {% $l = n_x + n_y + n_z$ %} *) totAngMom : AngularMomentum.t; (** Total angular momentum : {% $l = n_x + n_y + n_z$ %} *)
size : int; (** Number of contracted functions, {% $m$ %} in the formula *)
norm_coef : float array; (** Normalization coefficients of primitive functions {% $\mathcal{N}_i$ %} *) norm_coef : float array; (** Normalization coefficients of primitive functions {% $\mathcal{N}_i$ %} *)
norm_coef_scale : float array; (** Scaling factors {% $f_i$ %}, given in the same order as [AngularMomentum.zkey_array totAngMom]. *) norm_coef_scale : float array; (** Scaling factors {% $f_i$ %}, given in the same order as [AngularMomentum.zkey_array totAngMom]. *)
index : int; (** Index in the basis set, represented as an array of contracted shells. *) index : int; (** Index in the basis set, represented as an array of contracted shells. *)
} }
module Am = AngularMomentum module Am = AngularMomentum
module Ps = PrimitiveShell
let compute_norm_coef expo totAngMom = let make ?(index=0) lc =
let atot = assert (Array.length lc > 0);
Am.to_int totAngMom
in
let factor int_array =
let dfa = Array.map (fun j ->
( float_of_int (1 lsl j) *. fact j) /. fact (j+j)
) int_array
in
sqrt (dfa.(0) *.dfa.(1) *. dfa.(2))
in
let expo =
if atot mod 2 = 0 then
Array.map (fun alpha ->
let alpha_2 = alpha +. alpha in
(alpha_2 *. pi_inv)**(0.75) *. (pow (alpha_2 +. alpha_2) (atot/2))
) expo
else
Array.map (fun alpha ->
let alpha_2 = alpha +. alpha in
(alpha_2 *. pi_inv)**(0.75) *. sqrt (pow (alpha_2 +. alpha_2) atot)
) expo
in
Array.map (fun x -> let f a = x *. (factor a) in f) expo
let coef = Array.map fst lc
and prim = Array.map snd lc
in
let make ~index ~expo ~coef ~center ~totAngMom = let center = Ps.center prim.(0) in
assert (Array.length expo = Array.length coef); let rec unique_center = function
assert (Array.length expo > 0); | 0 -> true
let norm_coef_func = | i -> if Ps.center prim.(i) = center then unique_center (i-1) else false
compute_norm_coef expo totAngMom
in in
let powers = if not (unique_center (Array.length prim - 1)) then
Am.zkey_array (Am.Singlet totAngMom) invalid_arg "ContractedShell.make Coordinate.t differ";
let totAngMom = Ps.totAngMom prim.(0) in
let rec unique_angmom = function
| 0 -> true
| i -> if Ps.totAngMom prim.(i) = totAngMom then unique_angmom (i-1) else false
in in
if not (unique_angmom (Array.length prim - 1)) then
invalid_arg "ContractedShell.make: AngularMomentum.t differ";
let expo = Array.map Ps.expo prim in
let norm_coef = let norm_coef =
Array.map (fun f -> f [| Am.to_int totAngMom ; 0 ; 0 |]) norm_coef_func Array.map Ps.norm_coef prim
in in
let norm_coef_scale = let norm_coef_scale = Ps.norm_coef_scale prim.(0)
Array.map (fun a ->
(norm_coef_func.(0) (Zkey.to_int_array a)) /. norm_coef.(0)
) powers
in in
{ index ; expo ; coef ; center ; totAngMom ; size=Array.length expo ; norm_coef ; { index ; expo ; coef ; center ; totAngMom ; norm_coef ;
norm_coef_scale } norm_coef_scale }
@ -80,38 +67,6 @@ let to_string s =
|> Array.to_list |> String.concat (sprintf "\n%36s" " ") ) |> Array.to_list |> String.concat (sprintf "\n%36s" " ") )
(** Normalization coefficient of contracted function i, which depends on the
exponent and the angular momentum. Two conventions can be chosen : a single
normalisation factor for all functions of the class, or a coefficient which
depends on the powers of x,y and z.
Returns, for each contracted function, an array of functions taking as
argument the [|x;y;z|] powers.
*)
let compute_norm_coef expo totAngMom =
let atot =
Am.to_int totAngMom
in
let factor int_array =
let dfa = Array.map (fun j ->
(float_of_int (1 lsl j) *. fact j) /. fact (j+j)
) int_array
in
sqrt (dfa.(0) *.dfa.(1) *. dfa.(2))
in
let expo =
if atot mod 2 = 0 then
Array.map (fun alpha ->
let alpha_2 = alpha +. alpha in
(alpha_2 *. pi_inv)**(0.75) *. (pow (alpha_2 +. alpha_2) (atot/2))
) expo
else
Array.map (fun alpha ->
let alpha_2 = alpha +. alpha in
(alpha_2 *. pi_inv)**(0.75) *. sqrt (pow (alpha_2 +. alpha_2) atot)
) expo
in
Array.map (fun x -> let f a = x *. factor a in f) expo
let expo x = x.expo let expo x = x.expo

View File

@ -33,12 +33,8 @@ type t
val to_string : t -> string val to_string : t -> string
(** Pretty-printing of the contracted shell in a string *) (** Pretty-printing of the contracted shell in a string *)
val make : val make : ?index:int -> (float * PrimitiveShell.t) array -> t
index:int -> (** Creates a contracted shell from a list of coefficients and primitives. *)
expo:float array ->
coef:float array ->
center:Coordinate.t -> totAngMom:AngularMomentum.t -> t
(** Creates a contracted shell *)
val with_index : t -> int -> t val with_index : t -> int -> t
(** Returns a copy of the contracted shell with a modified index *) (** Returns a copy of the contracted shell with a modified index *)

View File

@ -61,8 +61,10 @@ val totAngMomInt : t -> int
val monocentric : t -> bool val monocentric : t -> bool
(** If true, the two contracted shells have the same center. *) (** If true, the two contracted shells have the same center. *)
val hash : 'a array -> int array (*
val cmp : 'a array -> 'a array -> int val hash : t -> int array
val equivalent : 'a array -> 'a array -> bool val cmp : t -> t -> int
val equivalent : t -> t -> bool
val unique : 'a array array array -> 'a array list val unique : 'a array array array -> 'a array list
val indices : 'a array array array -> (int array, int * int) Hashtbl.t val indices : 'a array array array -> (int array, int * int) Hashtbl.t
*)

82
Basis/PrimitiveShell.ml Normal file
View File

@ -0,0 +1,82 @@
open Util
open Constants
open Coordinate
type t = {
expo : float;
norm_coef : float;
norm_coef_scale : float array lazy_t;
center : Coordinate.t;
totAngMom : AngularMomentum.t;
}
module Am = AngularMomentum
let compute_norm_coef alpha totAngMom =
let atot =
Am.to_int totAngMom
in
let factor int_array =
let dfa = Array.map (fun j ->
( float_of_int (1 lsl j) *. fact j) /. fact (j+j)
) int_array
in
sqrt (dfa.(0) *.dfa.(1) *. dfa.(2))
in
let expo =
if atot mod 2 = 0 then
let alpha_2 = alpha +. alpha in
(alpha_2 *. pi_inv)**(0.75) *. (pow (alpha_2 +. alpha_2) (atot/2))
else
let alpha_2 = alpha +. alpha in
(alpha_2 *. pi_inv)**(0.75) *. sqrt (pow (alpha_2 +. alpha_2) atot)
in
let f a =
expo *. (factor a)
in f
let make totAngMom center expo =
let norm_coef_func =
compute_norm_coef expo totAngMom
in
let norm_coef =
norm_coef_func [| Am.to_int totAngMom ; 0 ; 0 |]
in
let powers =
Am.zkey_array (Am.Singlet totAngMom)
in
let norm_coef_scale = lazy (
Array.map (fun a ->
(norm_coef_func (Zkey.to_int_array a)) /. norm_coef
) powers )
in
{ expo ; norm_coef ; norm_coef_scale ; center ; totAngMom }
let to_string s =
let coord = s.center in
Printf.sprintf "%1s %8.3f %8.3f %8.3f %16.8e" (Am.to_string s.totAngMom)
(get X coord) (get Y coord) (get Z coord) s.expo
(** Normalization coefficient of contracted function i, which depends on the
exponent and the angular momentum. Two conventions can be chosen : a single
normalisation factor for all functions of the class, or a coefficient which
depends on the powers of x,y and z.
Returns, for each contracted function, an array of functions taking as
argument the [|x;y;z|] powers.
*)
let expo x = x.expo
let center x = x.center
let totAngMom x = x.totAngMom
let norm_coef x = x.norm_coef
let norm_coef_scale x = Lazy.force x.norm_coef_scale
let size_of_shell x = Array.length (norm_coef_scale x)

54
Basis/PrimitiveShell.mli Normal file
View File

@ -0,0 +1,54 @@
(** Set of Gaussians with a given {!AngularMomentum.t}
{% \\[
g(r) = (x-X_A)^{n_x} (y-Y_A)^{n_y} (z-Z_A)^{n_z} \exp \left( -\alpha |r-R_A|^2 \right)
\\] %}
where:
- {% $n_x + n_y + n_z = l$ %}, the total angular momentum
- {% $\alpha$ %} is the exponent
*)
type t
val to_string : t -> string
(** Pretty-printing of the primitive shell in a string. *)
val make : AngularMomentum.t -> Coordinate.t -> float -> t
(** Creates a primitive shell from the total angular momentum, the coordinates of the
center and the exponent. *)
val expo : t -> float
(** Returns the exponent {% $\alpha$ %}. *)
val center : t -> Coordinate.t
(** Coordinate of the center {% $\mathbf{A} = (X_A,Y_A,Z_A)$ %}. *)
val totAngMom : t -> AngularMomentum.t
(** Total angular momentum : {% $l = n_x + n_y + n_z$ %}. *)
val norm_coef : t -> float
(** Normalization coefficient of the shell:
{% \\[
\mathcal{N} = \sqrt{\iiint \left[ (x-X_A)^{l}
\exp (-\alpha |r-R_A|^2) \right]^2 \, dx\, dy\, dz}
\\] %}
*)
val norm_coef_scale : t -> float array
(** Scaling factors adjusting the normalization coefficient for the.
particular powers of {% $x,y,z$ %}. They are given in the same order as
[AngularMomentum.zkey_array totAngMom]:
{% \\[
f = \frac{1}{\mathcal{N}} \sqrt{\iiint [g(r)]^2 \, d^3r}
\\] %}
*)
val size_of_shell : t -> int
(** Number of functions in the shell. *)