mirror of
https://gitlab.com/scemama/QCaml.git
synced 2025-01-03 10:05:40 +01:00
Added CI
This commit is contained in:
parent
a9c5fd16a9
commit
5f47e96962
1183
ci/lib/ci.ml
Normal file
1183
ci/lib/ci.ml
Normal file
File diff suppressed because it is too large
Load Diff
283
ci/lib/ci_matrix_element.ml
Normal file
283
ci/lib/ci_matrix_element.ml
Normal file
@ -0,0 +1,283 @@
|
|||||||
|
open Common
|
||||||
|
|
||||||
|
module De = Determinant
|
||||||
|
module Ex = Excitation
|
||||||
|
module Sp = Spindeterminant
|
||||||
|
|
||||||
|
type t = float list
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
(** Computes non-zero integral values.
|
||||||
|
|
||||||
|
@param integrals A list of tuples containing one-electron, two-electron integrals, and optionally three-electron integrals.
|
||||||
|
@param degree_a The degree of excitation in alpha spin orbitals.
|
||||||
|
@param degree_b The degree of excitation in beta spin orbitals.
|
||||||
|
@param ki The initial Slater determinant.
|
||||||
|
@param kj The final Slater determinant.
|
||||||
|
|
||||||
|
|
||||||
|
@return TODO A list of computed integral values based on the specified degrees and molecular orbitals.
|
||||||
|
|
||||||
|
This function performs the following operations:
|
||||||
|
- Converts spin determinants to lists of molecular orbitals for alpha and beta spins.
|
||||||
|
- Defines helper functions for singly and doubly excited determinants, and diagonal elements
|
||||||
|
- Uses lazy evaluation to defer computations until required.
|
||||||
|
- Supports both two-electron and three-electron integrals, handling phase factors appropriately.
|
||||||
|
|
||||||
|
Example usage:
|
||||||
|
{[
|
||||||
|
let integrals = [(one_e_integral, two_e_integral, None); (one_e_integral, two_e_integral, Some three_e_integral)] in
|
||||||
|
let result = non_zero integrals 1 1 ki kj
|
||||||
|
]}
|
||||||
|
|
||||||
|
*)
|
||||||
|
|
||||||
|
let non_zero integrals degree_a degree_b ki kj =
|
||||||
|
let kia = De.alfa ki and kib = De.beta ki
|
||||||
|
and kja = De.alfa kj and kjb = De.beta kj
|
||||||
|
in
|
||||||
|
|
||||||
|
let single h p spin same opposite =
|
||||||
|
let same_spin_mo_list =
|
||||||
|
Sp.to_list same
|
||||||
|
and opposite_spin_mo_list =
|
||||||
|
Sp.to_list opposite
|
||||||
|
in
|
||||||
|
fun one_e two_e ->
|
||||||
|
let same_spin =
|
||||||
|
List.fold_left (fun accu i -> accu +. two_e h i p i spin spin) 0. same_spin_mo_list
|
||||||
|
and opposite_spin =
|
||||||
|
List.fold_left (fun accu i -> accu +. two_e h i p i spin (Spin.other spin) ) 0. opposite_spin_mo_list
|
||||||
|
in (one_e h p spin) +. same_spin +. opposite_spin
|
||||||
|
in
|
||||||
|
|
||||||
|
let diag_element =
|
||||||
|
let mo_a = Sp.to_list kia
|
||||||
|
and mo_b = Sp.to_list kib
|
||||||
|
in
|
||||||
|
fun one_e two_e ->
|
||||||
|
let one =
|
||||||
|
(List.fold_left (fun accu i -> accu +. one_e i i Spin.Alfa) 0. mo_a)
|
||||||
|
+.
|
||||||
|
(List.fold_left (fun accu i -> accu +. one_e i i Spin.Beta) 0. mo_b)
|
||||||
|
in
|
||||||
|
let two =
|
||||||
|
let rec aux_same spin accu = function
|
||||||
|
| [] -> accu
|
||||||
|
| i :: rest ->
|
||||||
|
let new_accu =
|
||||||
|
List.fold_left (fun accu j -> accu +. two_e i j i j spin spin) accu rest
|
||||||
|
in
|
||||||
|
(aux_same [@tailcall]) spin new_accu rest
|
||||||
|
in
|
||||||
|
let rec aux_opposite accu other = function
|
||||||
|
| [] -> accu
|
||||||
|
| i :: rest ->
|
||||||
|
let new_accu =
|
||||||
|
List.fold_left (fun accu j -> accu +. two_e i j i j Spin.Alfa Spin.Beta) accu other
|
||||||
|
in
|
||||||
|
(aux_opposite [@tailcall]) new_accu other rest
|
||||||
|
in
|
||||||
|
(aux_same Spin.Alfa 0. mo_a) +. (aux_same Spin.Beta 0. mo_b) +.
|
||||||
|
(aux_opposite 0. mo_a mo_b)
|
||||||
|
in
|
||||||
|
one +. two
|
||||||
|
in
|
||||||
|
|
||||||
|
let result_2e = lazy (
|
||||||
|
match degree_a, degree_b with
|
||||||
|
| 1, 1 -> (* alpha-beta double *)
|
||||||
|
begin
|
||||||
|
let ha, pa, phase_a = Ex.single_of_spindet kia kja in
|
||||||
|
let hb, pb, phase_b = Ex.single_of_spindet kib kjb in
|
||||||
|
match phase_a, phase_b with
|
||||||
|
| Phase.Pos, Phase.Pos
|
||||||
|
| Phase.Neg, Phase.Neg -> fun _ two_e -> two_e ha hb pa pb Spin.Alfa Spin.Beta
|
||||||
|
| Phase.Neg, Phase.Pos
|
||||||
|
| Phase.Pos, Phase.Neg -> fun _ two_e -> -. two_e ha hb pa pb Spin.Alfa Spin.Beta
|
||||||
|
end
|
||||||
|
|
||||||
|
| 2, 0 -> (* alpha double *)
|
||||||
|
begin
|
||||||
|
let h1, p1, h2, p2, phase = Ex.double_of_spindet kia kja in
|
||||||
|
match phase with
|
||||||
|
| Phase.Pos -> fun _ two_e -> two_e h1 h2 p1 p2 Spin.Alfa Spin.Alfa
|
||||||
|
| Phase.Neg -> fun _ two_e -> -. two_e h1 h2 p1 p2 Spin.Alfa Spin.Alfa
|
||||||
|
end
|
||||||
|
|
||||||
|
| 0, 2 -> (* beta double *)
|
||||||
|
begin
|
||||||
|
let h1, p1, h2, p2, phase = Ex.double_of_spindet kib kjb in
|
||||||
|
match phase with
|
||||||
|
| Phase.Pos -> fun _ two_e -> two_e h1 h2 p1 p2 Spin.Beta Spin.Beta
|
||||||
|
| Phase.Neg -> fun _ two_e -> -. two_e h1 h2 p1 p2 Spin.Beta Spin.Beta
|
||||||
|
end
|
||||||
|
|
||||||
|
| 1, 0 -> (* alpha single *)
|
||||||
|
begin
|
||||||
|
let h, p, phase = Ex.single_of_spindet kia kja in
|
||||||
|
match phase with
|
||||||
|
| Phase.Pos -> fun one_e two_e -> single h p Spin.Alfa kia kib one_e two_e
|
||||||
|
| Phase.Neg -> fun one_e two_e -> -. single h p Spin.Alfa kia kib one_e two_e
|
||||||
|
end
|
||||||
|
|
||||||
|
| 0, 1 -> (* beta single *)
|
||||||
|
begin
|
||||||
|
let h, p, phase = Ex.single_of_spindet kib kjb in
|
||||||
|
match phase with
|
||||||
|
| Phase.Pos -> fun one_e two_e -> single h p Spin.Beta kib kia one_e two_e
|
||||||
|
| Phase.Neg -> fun one_e two_e -> -. single h p Spin.Beta kib kia one_e two_e
|
||||||
|
end
|
||||||
|
|
||||||
|
| 0, 0 -> (* diagonal element *)
|
||||||
|
diag_element
|
||||||
|
|
||||||
|
| _ -> assert false
|
||||||
|
) in
|
||||||
|
|
||||||
|
let result_3e = lazy (
|
||||||
|
match degree_a, degree_b with
|
||||||
|
| 1, 1 -> (* alpha-beta double *)
|
||||||
|
begin
|
||||||
|
let ha, pa, phase_a = Ex.single_of_spindet kia kja in
|
||||||
|
let hb, pb, phase_b = Ex.single_of_spindet kib kjb in
|
||||||
|
match phase_a, phase_b with
|
||||||
|
| Phase.Pos, Phase.Pos
|
||||||
|
| Phase.Neg, Phase.Neg -> fun _ two_e _ -> two_e ha hb pa pb Spin.Alfa Spin.Beta
|
||||||
|
| Phase.Neg, Phase.Pos
|
||||||
|
| Phase.Pos, Phase.Neg -> fun _ two_e _ -> -. two_e ha hb pa pb Spin.Alfa Spin.Beta
|
||||||
|
end
|
||||||
|
|
||||||
|
| 2, 0 -> (* alpha double *)
|
||||||
|
begin
|
||||||
|
let h1, p1, h2, p2, phase = Ex.double_of_spindet kia kja in
|
||||||
|
match phase with
|
||||||
|
| Phase.Pos -> fun _ two_e _ -> two_e h1 h2 p1 p2 Spin.Alfa Spin.Alfa
|
||||||
|
| Phase.Neg -> fun _ two_e _ -> -. two_e h1 h2 p1 p2 Spin.Alfa Spin.Alfa
|
||||||
|
end
|
||||||
|
|
||||||
|
| 0, 2 -> (* beta double *)
|
||||||
|
begin
|
||||||
|
let h1, p1, h2, p2, phase = Ex.double_of_spindet kib kjb in
|
||||||
|
match phase with
|
||||||
|
| Phase.Pos -> fun _ two_e _ -> two_e h1 h2 p1 p2 Spin.Beta Spin.Beta
|
||||||
|
| Phase.Neg -> fun _ two_e _ -> -. two_e h1 h2 p1 p2 Spin.Beta Spin.Beta
|
||||||
|
end
|
||||||
|
|
||||||
|
| 1, 0 -> (* alpha single *)
|
||||||
|
begin
|
||||||
|
let h, p, phase = Ex.single_of_spindet kia kja in
|
||||||
|
match phase with
|
||||||
|
| Phase.Pos -> fun one_e two_e _ -> single h p Spin.Alfa kia kib one_e two_e
|
||||||
|
| Phase.Neg -> fun one_e two_e _ -> -. single h p Spin.Alfa kia kib one_e two_e
|
||||||
|
end
|
||||||
|
|
||||||
|
| 0, 1 -> (* beta single *)
|
||||||
|
begin
|
||||||
|
let h, p, phase = Ex.single_of_spindet kib kjb in
|
||||||
|
match phase with
|
||||||
|
| Phase.Pos -> fun one_e two_e _ -> single h p Spin.Beta kib kia one_e two_e
|
||||||
|
| Phase.Neg -> fun one_e two_e _ -> -. single h p Spin.Beta kib kia one_e two_e
|
||||||
|
end
|
||||||
|
|
||||||
|
| 0, 0 -> (* diagonal element *)
|
||||||
|
fun one_e two_e _ -> diag_element one_e two_e
|
||||||
|
|
||||||
|
| 3, 0 -> (* alpha triple *)
|
||||||
|
begin
|
||||||
|
let h1, p1, h2, p2, h3, p3, phase = Ex.triple_of_spindet kia kja in
|
||||||
|
match phase with
|
||||||
|
| Phase.Pos -> fun _ _ three_e -> three_e h1 h2 h3 p1 p2 p3 Spin.Alfa Spin.Alfa Spin.Alfa
|
||||||
|
| Phase.Neg -> fun _ _ three_e -> -. three_e h1 h2 h3 p1 p2 p3 Spin.Alfa Spin.Alfa Spin.Alfa
|
||||||
|
end
|
||||||
|
|
||||||
|
| 0, 3 -> (* beta triple *)
|
||||||
|
begin
|
||||||
|
let h1, p1, h2, p2, h3, p3, phase = Ex.triple_of_spindet kib kja in
|
||||||
|
match phase with
|
||||||
|
| Phase.Pos -> fun _ _ three_e -> three_e h1 h2 h3 p1 p2 p3 Spin.Beta Spin.Beta Spin.Beta
|
||||||
|
| Phase.Neg -> fun _ _ three_e -> -. three_e h1 h2 h3 p1 p2 p3 Spin.Beta Spin.Beta Spin.Beta
|
||||||
|
end
|
||||||
|
|
||||||
|
| 2, 1 -> (* alpha2 beta triple *)
|
||||||
|
begin
|
||||||
|
let h1, p1, h2, p2, phase = Ex.double_of_spindet kia kja in
|
||||||
|
let h3, p3, phase' = Ex.single_of_spindet kib kjb in
|
||||||
|
match phase, phase' with
|
||||||
|
| Phase.Pos, Phase.Pos
|
||||||
|
| Phase.Neg, Phase.Neg ->
|
||||||
|
fun _ _ three_e -> three_e h1 h2 h3 p1 p2 p3 Spin.Alfa Spin.Alfa Spin.Beta
|
||||||
|
| Phase.Neg, Phase.Pos
|
||||||
|
| Phase.Pos, Phase.Neg ->
|
||||||
|
fun _ _ three_e -> -. three_e h1 h2 h3 p1 p2 p3 Spin.Alfa Spin.Alfa Spin.Beta
|
||||||
|
end
|
||||||
|
|
||||||
|
| 1, 2 -> (* alpha beta2 triple *)
|
||||||
|
begin
|
||||||
|
let h1, p1, phase = Ex.single_of_spindet kia kja in
|
||||||
|
let h2, p2, h3, p3, phase' = Ex.double_of_spindet kib kjb in
|
||||||
|
match phase, phase' with
|
||||||
|
| Phase.Pos, Phase.Pos
|
||||||
|
| Phase.Neg, Phase.Neg ->
|
||||||
|
fun _ _ three_e -> three_e h1 h2 h3 p1 p2 p3 Spin.Alfa Spin.Beta Spin.Beta
|
||||||
|
| Phase.Neg, Phase.Pos
|
||||||
|
| Phase.Pos, Phase.Neg ->
|
||||||
|
fun _ _ three_e -> -. three_e h1 h2 h3 p1 p2 p3 Spin.Alfa Spin.Beta Spin.Beta
|
||||||
|
end
|
||||||
|
|
||||||
|
| _ -> fun _ _ _ -> 0.
|
||||||
|
) in
|
||||||
|
|
||||||
|
List.map (fun (one_e, two_e, x) ->
|
||||||
|
match x with
|
||||||
|
| None -> (Lazy.force result_2e) one_e two_e
|
||||||
|
| Some three_e -> (Lazy.force result_3e) one_e two_e three_e
|
||||||
|
) integrals
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
let make integrals ki kj =
|
||||||
|
let degree_a, degree_b =
|
||||||
|
De.excitation_levels ki kj
|
||||||
|
in
|
||||||
|
if degree_a+degree_b > 2 then
|
||||||
|
List.map (fun _ -> 0.) integrals
|
||||||
|
else
|
||||||
|
non_zero integrals degree_a degree_b ki kj
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
let make_s2 ki kj =
|
||||||
|
let degree_a = De.excitation_level_alfa ki kj in
|
||||||
|
let kia = De.alfa ki in
|
||||||
|
let kja = De.alfa kj in
|
||||||
|
if degree_a > 1 then 0.
|
||||||
|
else
|
||||||
|
let degree_b = De.excitation_level_beta ki kj in
|
||||||
|
let kib = De.beta ki in
|
||||||
|
let kjb = De.beta kj in
|
||||||
|
match degree_a, degree_b with
|
||||||
|
| 1, 1 -> (* alpha-beta double *)
|
||||||
|
let ha, pa, phase_a = Ex.single_of_spindet kia kja in
|
||||||
|
let hb, pb, phase_b = Ex.single_of_spindet kib kjb in
|
||||||
|
if ha = pb && hb = pa then
|
||||||
|
begin
|
||||||
|
match phase_a, phase_b with
|
||||||
|
| Phase.Pos, Phase.Pos
|
||||||
|
| Phase.Neg, Phase.Neg -> -1.
|
||||||
|
| Phase.Neg, Phase.Pos
|
||||||
|
| Phase.Pos, Phase.Neg -> 1.
|
||||||
|
end
|
||||||
|
else 0.
|
||||||
|
| 0, 0 ->
|
||||||
|
let ba = Sp.bitstring kia and bb = Sp.bitstring kib in
|
||||||
|
let tmp = Bitstring.logxor ba bb in
|
||||||
|
let n_a = Bitstring.logand ba tmp |> Bitstring.popcount in
|
||||||
|
let n_b = Bitstring.logand bb tmp |> Bitstring.popcount in
|
||||||
|
let s_z = 0.5 *. float_of_int (n_a - n_b) in
|
||||||
|
float_of_int n_a +. s_z *. (s_z -. 1.)
|
||||||
|
| _ -> 0.
|
||||||
|
|
||||||
|
|
67
ci/lib/ci_matrix_element.mli
Normal file
67
ci/lib/ci_matrix_element.mli
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
open Common
|
||||||
|
module De = Determinant
|
||||||
|
|
||||||
|
type t
|
||||||
|
|
||||||
|
val make :
|
||||||
|
((int -> int -> Spin.t -> float) *
|
||||||
|
(int -> int -> int -> int -> Spin.t -> Spin.t -> float) *
|
||||||
|
(int -> int -> int -> int -> int -> int -> Spin.t -> Spin.t -> Spin.t -> float) option) list ->
|
||||||
|
De.t -> De.t -> float list
|
||||||
|
(** [make integrals ki kj] Computes matrix elements for multiple operators between two Slater
|
||||||
|
determinants, or returns zeros if the total degree of excitation exceeds 2.
|
||||||
|
|
||||||
|
@param integrals A list of tuples containing one-electron, two-electron
|
||||||
|
integrals, and optionally three-electron integrals, for each operator
|
||||||
|
@param ki The initial Slater determinant.
|
||||||
|
@param kj The final Slater determinant.
|
||||||
|
|
||||||
|
@return A list of computed matrix elements or zeroes if the total excitation
|
||||||
|
lebel (degree_a + degree_b) is greater than 2.
|
||||||
|
|
||||||
|
Example usage:
|
||||||
|
{[
|
||||||
|
let integrals = [(one_e_integral, two_e_integral, None); (one_e_integral', two_e_integral', Some three_e_integral')] in
|
||||||
|
let result = make integrals ki kj
|
||||||
|
]}
|
||||||
|
*)
|
||||||
|
|
||||||
|
val make_s2 : De.t -> De.t -> float
|
||||||
|
(** [make_s2 ki kj] computes the value of the $S^2$ operator for two determinants.
|
||||||
|
|
||||||
|
@param ki The initial spin determinant.
|
||||||
|
@param kj The final spin determinant.
|
||||||
|
|
||||||
|
@return The computed value of the $S^2$ operator.
|
||||||
|
|
||||||
|
Example usage:
|
||||||
|
{[
|
||||||
|
let s2_value = make_s2 ki kj
|
||||||
|
]}
|
||||||
|
|
||||||
|
*)
|
||||||
|
|
||||||
|
|
||||||
|
(** Computes matrix elements when the user knows they are non-zero.
|
||||||
|
|
||||||
|
@param integrals A list of tuples containing one-electron, two-electron integrals, and optionally three-electron integrals.
|
||||||
|
@param degree_a The degree of excitation in alpha spin orbitals.
|
||||||
|
@param degree_b The degree of excitation in beta spin orbitals.
|
||||||
|
@param ki The initial Slater determinant.
|
||||||
|
@param kj The final Slater determinant.
|
||||||
|
|
||||||
|
|
||||||
|
@return A list of matrix elements for multiple operators
|
||||||
|
|
||||||
|
Example usage:
|
||||||
|
{[
|
||||||
|
let integrals = [(one_e_integral, two_e_integral, None); (one_e_integral, two_e_integral, Some three_e_integral)] in
|
||||||
|
let result = non_zero integrals 1 1 ki kj
|
||||||
|
]}
|
||||||
|
|
||||||
|
*)
|
||||||
|
val non_zero :
|
||||||
|
((int -> int -> Spin.t -> float) *
|
||||||
|
(int -> int -> int -> int -> Spin.t -> Spin.t -> float) *
|
||||||
|
(int -> int -> int -> int -> int -> int -> Spin.t -> Spin.t -> Spin.t -> float) option) list ->
|
||||||
|
int -> int -> De.t -> De.t -> float list
|
162
linear_algebra/lib/davidson.ml
Normal file
162
linear_algebra/lib/davidson.ml
Normal file
@ -0,0 +1,162 @@
|
|||||||
|
open Common
|
||||||
|
|
||||||
|
let (%.) = Vector.(%.)
|
||||||
|
let (%:) = Matrix.(%:)
|
||||||
|
|
||||||
|
type t
|
||||||
|
|
||||||
|
let make
|
||||||
|
?guess
|
||||||
|
?(n_states=1)
|
||||||
|
?(n_iter=8)
|
||||||
|
?(threshold=1.e-7)
|
||||||
|
diagonal
|
||||||
|
matrix_prod
|
||||||
|
=
|
||||||
|
|
||||||
|
(* Size of the matrix to diagonalize *)
|
||||||
|
let n = Vector.dim diagonal in
|
||||||
|
|
||||||
|
let m = n_states in
|
||||||
|
|
||||||
|
(* Create guess vectors u, with unknown vectors initialized to unity. *)
|
||||||
|
let init_vectors m =
|
||||||
|
let result = Matrix.make n m 0. in
|
||||||
|
for i=0 to m-1 do
|
||||||
|
Matrix.set result i i 1.;
|
||||||
|
done;
|
||||||
|
result
|
||||||
|
in
|
||||||
|
|
||||||
|
let guess =
|
||||||
|
match guess with
|
||||||
|
| Some vectors -> vectors
|
||||||
|
| None -> init_vectors m
|
||||||
|
in
|
||||||
|
|
||||||
|
let guess =
|
||||||
|
if Matrix.dim2 guess = n_states then guess
|
||||||
|
else
|
||||||
|
(Matrix.to_col_vecs_list guess) @
|
||||||
|
(Matrix.to_col_vecs_list (init_vectors (m-(Matrix.dim2 guess))) )
|
||||||
|
|> Matrix.of_col_vecs_list
|
||||||
|
in
|
||||||
|
|
||||||
|
let pick_new u =
|
||||||
|
Matrix.to_col_vecs_list u
|
||||||
|
|> Util.list_pack m
|
||||||
|
|> List.rev
|
||||||
|
|> List.hd
|
||||||
|
in
|
||||||
|
|
||||||
|
let u_new = Matrix.to_col_vecs_list guess in
|
||||||
|
|
||||||
|
let rec iteration u u_new w iter macro =
|
||||||
|
(* u is a list of orthonormal vectors, on which the operator has
|
||||||
|
been applied : w = op.u
|
||||||
|
u_new is a list of vectors which will increase the size of the
|
||||||
|
space.
|
||||||
|
*)
|
||||||
|
(* Orthonormalize input vectors u_new *)
|
||||||
|
let u_new_ortho =
|
||||||
|
List.concat [u ; u_new]
|
||||||
|
|> Matrix.of_col_vecs_list
|
||||||
|
|> Orthonormalization.qr_ortho
|
||||||
|
|> pick_new
|
||||||
|
in
|
||||||
|
|
||||||
|
(* Apply the operator to the m last vectors *)
|
||||||
|
let w_new =
|
||||||
|
matrix_prod (
|
||||||
|
u_new_ortho
|
||||||
|
|> Matrix.of_col_vecs_list)
|
||||||
|
|> Matrix.to_col_vecs_list
|
||||||
|
in
|
||||||
|
|
||||||
|
(* Data for the next iteration *)
|
||||||
|
let u_next =
|
||||||
|
List.concat [ u ; u_new_ortho ]
|
||||||
|
and w_next =
|
||||||
|
List.concat [ w ; w_new ]
|
||||||
|
in
|
||||||
|
|
||||||
|
(* Build the small matrix h = <U_k | W_l> *)
|
||||||
|
let m_U =
|
||||||
|
Matrix.of_col_vecs_list u_next
|
||||||
|
and m_W =
|
||||||
|
Matrix.of_col_vecs_list w_next
|
||||||
|
in
|
||||||
|
let m_h =
|
||||||
|
Matrix.gemm_tn m_U m_W
|
||||||
|
in
|
||||||
|
|
||||||
|
(* Diagonalize h *)
|
||||||
|
let y, lambda =
|
||||||
|
Matrix.diagonalize_symm m_h
|
||||||
|
in
|
||||||
|
|
||||||
|
(* Express m lowest eigenvectors of h in the large basis *)
|
||||||
|
let m_new_U =
|
||||||
|
Matrix.gemm ~n:m m_U y
|
||||||
|
and m_new_W =
|
||||||
|
Matrix.gemm ~n:m m_W y
|
||||||
|
in
|
||||||
|
|
||||||
|
(* Compute the residual as proposed new vectors *)
|
||||||
|
let u_proposed =
|
||||||
|
Matrix.init_cols n m (fun i k ->
|
||||||
|
let delta = lambda%.(k) -. diagonal%.(i) in
|
||||||
|
let delta =
|
||||||
|
if abs_float delta > 1.e-2 then delta
|
||||||
|
else if delta > 0. then 1.e-2
|
||||||
|
else (-1.e-2)
|
||||||
|
in
|
||||||
|
(lambda%.(k) *. (m_new_U%:(i,k)) -. (m_new_W%:(i,k)) ) /. delta
|
||||||
|
)
|
||||||
|
|> Matrix.to_col_vecs_list
|
||||||
|
in
|
||||||
|
|
||||||
|
|
||||||
|
let residual_norms = List.rev @@ List.rev_map Vector.norm u_proposed in
|
||||||
|
let residual_norm =
|
||||||
|
List.fold_left (fun accu i -> accu +. i *. i) 0. residual_norms
|
||||||
|
|> sqrt
|
||||||
|
in
|
||||||
|
|
||||||
|
Printf.printf "%3d " iter;
|
||||||
|
Vector.iteri (fun i x -> if (i<=m) then Printf.printf "%16.10f " x) lambda;
|
||||||
|
Printf.printf "%16.8e%!\n" residual_norm;
|
||||||
|
|
||||||
|
(* Make new vectors sparse *)
|
||||||
|
|
||||||
|
let u_proposed =
|
||||||
|
Matrix.of_col_vecs_list u_proposed
|
||||||
|
in
|
||||||
|
let maxu = Matrix.norm ~l:`Linf u_proposed in
|
||||||
|
let thr = maxu *. 0.00001 in
|
||||||
|
let u_proposed =
|
||||||
|
Matrix.map (fun x -> if abs_float x < thr then 0. else x) u_proposed
|
||||||
|
|> Matrix.to_col_vecs_list
|
||||||
|
in
|
||||||
|
(*
|
||||||
|
Format.printf "%a@." Matrix.pp_matrix @@ m_new_U;
|
||||||
|
*)
|
||||||
|
|
||||||
|
|
||||||
|
if residual_norm > threshold && macro > 0 then
|
||||||
|
let u_next, w_next, iter, macro =
|
||||||
|
if iter = n_iter then
|
||||||
|
m_new_U |> pick_new,
|
||||||
|
m_new_W |> pick_new,
|
||||||
|
0, (macro-1)
|
||||||
|
else
|
||||||
|
u_next, w_next, (iter+1), macro
|
||||||
|
in
|
||||||
|
(iteration [@tailcall]) u_next u_proposed w_next iter macro
|
||||||
|
else
|
||||||
|
(m_new_U |> pick_new |> Matrix.of_col_vecs_list), lambda
|
||||||
|
|
||||||
|
in
|
||||||
|
iteration [] u_new [] 1 30
|
||||||
|
|
||||||
|
|
21
linear_algebra/lib/davidson.mli
Normal file
21
linear_algebra/lib/davidson.mli
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
type t
|
||||||
|
|
||||||
|
val make :
|
||||||
|
?guess:('a, 'b) Matrix.t ->
|
||||||
|
?n_states:int ->
|
||||||
|
?n_iter:int ->
|
||||||
|
?threshold:float ->
|
||||||
|
'a Vector.t ->
|
||||||
|
(('a, 'b) Matrix.t -> ('a, 'b) Matrix.t) ->
|
||||||
|
('a, 'b) Matrix.t * 'b Vector.t
|
||||||
|
|
||||||
|
(** Performs a Davidson diagonalization. Example:
|
||||||
|
|
||||||
|
let eigenvectors, eigenvalues =
|
||||||
|
Davidson.make diagonal mat_prod
|
||||||
|
|
||||||
|
- [diagonal] contains the diagonal of the matrix to diagonalize
|
||||||
|
- [mat_prod] is a function performing a matrix multiplication of the matrix to
|
||||||
|
diagonalize with the matrix containing the current set of vectors
|
||||||
|
*)
|
||||||
|
|
@ -8,3 +8,4 @@ module Matrix = Matrix
|
|||||||
module Orthonormalization = Orthonormalization
|
module Orthonormalization = Orthonormalization
|
||||||
module Spherical_to_cartesian = Spherical_to_cartesian
|
module Spherical_to_cartesian = Spherical_to_cartesian
|
||||||
module Vector = Vector
|
module Vector = Vector
|
||||||
|
module Davidson = Davidson
|
||||||
|
@ -233,6 +233,13 @@ let to_array a =
|
|||||||
done;
|
done;
|
||||||
result
|
result
|
||||||
|
|
||||||
|
let norm ?(l=`L2) t =
|
||||||
|
match l with
|
||||||
|
| `L2 -> lange ~norm:`F t
|
||||||
|
| `L1 -> lange ~norm:`O t
|
||||||
|
| `Linf -> lange ~norm:`I t
|
||||||
|
|
||||||
|
|
||||||
let normalize_mat_inplace t =
|
let normalize_mat_inplace t =
|
||||||
let norm = Mat.as_vec t |> nrm2 in
|
let norm = Mat.as_vec t |> nrm2 in
|
||||||
Mat.scal norm t
|
Mat.scal norm t
|
||||||
@ -344,6 +351,16 @@ let copy ?m ?n ?br ?bc ?ar ?ac a =
|
|||||||
let copy_inplace ?m ?n ?br ?bc ~b ?ar ?ac a =
|
let copy_inplace ?m ?n ?br ?bc ~b ?ar ?ac a =
|
||||||
ignore @@ lacpy ?m ?n ?br ?bc ~b ?ar ?ac a
|
ignore @@ lacpy ?m ?n ?br ?bc ~b ?ar ?ac a
|
||||||
|
|
||||||
|
let copy_row ?vec a i =
|
||||||
|
let result =
|
||||||
|
match vec with
|
||||||
|
| None -> Mat.copy_row a i
|
||||||
|
| Some v ->
|
||||||
|
let vec = Vector.to_bigarray_inplace v in
|
||||||
|
Mat.copy_row ~vec a i
|
||||||
|
in
|
||||||
|
Vector.of_bigarray_inplace result
|
||||||
|
|
||||||
let scale_cols_inplace a v =
|
let scale_cols_inplace a v =
|
||||||
Vector.to_bigarray_inplace v
|
Vector.to_bigarray_inplace v
|
||||||
|> Mat.scal_cols a
|
|> Mat.scal_cols a
|
||||||
|
@ -71,6 +71,9 @@ val div : ('a,'b) t -> ('a,'b) t -> ('a,'b) t
|
|||||||
val amax : ('a,'b) t -> float
|
val amax : ('a,'b) t -> float
|
||||||
(** Maximum of the absolute values of the elements of the matrix. *)
|
(** Maximum of the absolute values of the elements of the matrix. *)
|
||||||
|
|
||||||
|
val norm : ?l:[< `L1 | `L2 | `Linf > `L2 ] -> ('a,'b) t -> float
|
||||||
|
(** $L^1$, $L^2$ or $L^\infty$ norm of the matrix *)
|
||||||
|
|
||||||
val add_inplace : c:('a,'b) t -> ('a,'b) t -> ('a,'b) t -> unit
|
val add_inplace : c:('a,'b) t -> ('a,'b) t -> ('a,'b) t -> unit
|
||||||
(** [add_inplace c a b] : performs [c = a+b] in-place. *)
|
(** [add_inplace c a b] : performs [c = a+b] in-place. *)
|
||||||
|
|
||||||
@ -118,10 +121,13 @@ val of_array : float array array -> ('a,'b) t
|
|||||||
(** Converts an array of arrays into a matrix *)
|
(** Converts an array of arrays into a matrix *)
|
||||||
|
|
||||||
val copy: ?m:int -> ?n:int -> ?br:int -> ?bc:int -> ?ar:int -> ?ac:int -> ('a,'b) t -> ('a,'b) t
|
val copy: ?m:int -> ?n:int -> ?br:int -> ?bc:int -> ?ar:int -> ?ac:int -> ('a,'b) t -> ('a,'b) t
|
||||||
(** Copies all or part of a two-dimensional matrix A to a new matrix B *)
|
(** Copies all or part of a matrix A to a new matrix B *)
|
||||||
|
|
||||||
val copy_inplace: ?m:int -> ?n:int -> ?br:int -> ?bc:int -> b:('a,'b) t -> ?ar:int -> ?ac:int -> ('a,'b) t -> unit
|
val copy_inplace: ?m:int -> ?n:int -> ?br:int -> ?bc:int -> b:('a,'b) t -> ?ar:int -> ?ac:int -> ('a,'b) t -> unit
|
||||||
(** Copies all or part of a two-dimensional matrix A to an existing matrix B *)
|
(** Copies all or part of a matrix A to an existing matrix B *)
|
||||||
|
|
||||||
|
val copy_row : ?vec:('b Vector.t) -> ('a,'b) t -> int -> 'b Vector.t
|
||||||
|
(** Copies a given row of a matrix into a vector *)
|
||||||
|
|
||||||
(*
|
(*
|
||||||
val col: ('a,'b) t -> int -> 'a Vector.t
|
val col: ('a,'b) t -> int -> 'a Vector.t
|
||||||
|
@ -4,7 +4,11 @@ type 'a t = Vec.t
|
|||||||
|
|
||||||
let relabel t = t
|
let relabel t = t
|
||||||
let copy ?n ?ofsy ?incy ?y ?ofsx ?incx t = copy ?n ?ofsy ?incy ?y ?ofsx ?incx t
|
let copy ?n ?ofsy ?incy ?y ?ofsx ?incx t = copy ?n ?ofsy ?incy ?y ?ofsx ?incx t
|
||||||
let norm t = nrm2 t
|
let norm ?(l=`L2) t =
|
||||||
|
match l with
|
||||||
|
| `L2 -> nrm2 t
|
||||||
|
| `L1 -> asum t
|
||||||
|
| `Linf -> amax t
|
||||||
|
|
||||||
let dim t = Vec.dim t
|
let dim t = Vec.dim t
|
||||||
let neg t = Vec.neg t
|
let neg t = Vec.neg t
|
||||||
|
@ -31,8 +31,8 @@ val div : 'a t -> 'a t -> 'a t
|
|||||||
val dot : 'a t -> 'a t -> float
|
val dot : 'a t -> 'a t -> float
|
||||||
(** [dot v1 v2] : Dot product between v1 and v2 *)
|
(** [dot v1 v2] : Dot product between v1 and v2 *)
|
||||||
|
|
||||||
val norm : 'a t -> float
|
val norm : ?l:[< `L1 | `L2 | `Linf > `L2 ] -> 'a t -> float
|
||||||
(** Norm of the vector : %{ ||v|| = $\sqrt{v.v}$ %} *)
|
(** $L^1$, $L^2$ or $L^\infty$ norm of the vector *)
|
||||||
|
|
||||||
val sqr : 'a t -> 'a t
|
val sqr : 'a t -> 'a t
|
||||||
(** [sqr t = map (fun x -> x *. x) t] *)
|
(** [sqr t = map (fun x -> x *. x) t] *)
|
||||||
|
Loading…
Reference in New Issue
Block a user