10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-12-30 16:15:40 +01:00

Introduced shell pair couples

This commit is contained in:
Anthony Scemama 2018-03-21 15:01:39 +01:00
parent 29d568a47b
commit 5ed5d91a9d
23 changed files with 652 additions and 433 deletions

View File

@ -5,7 +5,7 @@ type t = {
expo : float array array;
coef : float array array;
center : Coordinate.t;
totAngMom : AngularMomentum.t;
ang_mom : AngularMomentum.t;
norm_coef : float array array;
norm_coef_scale : float array;
index : int;
@ -32,10 +32,10 @@ let make ?(index=0) contr =
if not (unique_center (Array.length contr - 1)) then
invalid_arg "ContractedAtomicShell.make Coordinate.t differ";
let totAngMom = Cs.totAngMom contr.(0) in
let ang_mom = Cs.ang_mom contr.(0) in
let rec unique_angmom = function
| 0 -> true
| i -> if Cs.totAngMom contr.(i) = totAngMom then unique_angmom (i-1) else false
| i -> if Cs.ang_mom contr.(i) = ang_mom then unique_angmom (i-1) else false
in
if not (unique_angmom (Array.length contr - 1)) then
invalid_arg "ContractedShell.make: AngularMomentum.t differ";
@ -45,7 +45,7 @@ let make ?(index=0) contr =
in
let norm_coef_scale = Cs.norm_scales contr.(0)
in
{ index ; expo ; coef ; center ; totAngMom ; norm_coef ;
{ index ; expo ; coef ; center ; ang_mom ; norm_coef ;
norm_coef_scale ; contr }
@ -59,7 +59,7 @@ let coefficients x = x.coef
let center x = x.center
let totAngMom x = x.totAngMom
let ang_mom x = x.ang_mom
let size x = Array.length x.contr
@ -83,7 +83,7 @@ let pp_debug ppf x =
fprintf ppf "@[<2>expo =@ %a ;@]@ " pp_float_2darray_size x.expo;
fprintf ppf "@[<2>coef =@ %a ;@]@ " pp_float_2darray_size x.coef;
fprintf ppf "@[<2>center =@ %a ;@]@ " Co.pp_angstrom x.center;
fprintf ppf "@[<2>totAngMom =@ %a ;@]@ " Am.pp_string x.totAngMom;
fprintf ppf "@[<2>ang_mom =@ %a ;@]@ " Am.pp_string x.ang_mom;
fprintf ppf "@[<2>norm_coef =@ %a ;@]@ " pp_float_2darray_size x.norm_coef;
fprintf ppf "@[<2>norm_coef_scale =@ %a ;@]@ " pp_float_array_size x.norm_coef_scale;
fprintf ppf "@[<2>index =@ %d ;@]@ " x.index;
@ -91,7 +91,7 @@ let pp_debug ppf x =
let pp ppf s =
fprintf ppf "@[%3d-%-3d@]" (s.index+1) (s.index+ (size_of_shell s)*(size s));
fprintf ppf "@[%a@ %a@] @[" Am.pp_string s.totAngMom Co.pp s.center;
fprintf ppf "@[%a@ %a@] @[" Am.pp_string s.ang_mom Co.pp s.center;
Array.iter2 (fun e_arr c_arr -> fprintf ppf "@[<v>";
Array.iter2 (fun e c -> fprintf ppf "@[%16.8e %16.8e@]@;" e c)
e_arr c_arr;

View File

@ -42,7 +42,7 @@ val index : t -> int
val center : t -> Coordinate.t
(** Coordinate of the center {% $\mathbf{A} = (X_A,Y_A,Z_A)$ %}. *)
val totAngMom : t -> AngularMomentum.t
val ang_mom : t -> AngularMomentum.t
(** Total angular momentum : {% $l = n_x + n_y + n_z$ %}. *)
val size : t -> int
@ -68,7 +68,7 @@ val normalizations : t -> float array array
val norm_scales : t -> float array
(** Scaling factors {% $f(n_x,n_y,n_z)$ %}, given in the same order as
[AngularMomentum.zkey_array totAngMom]. *)
[AngularMomentum.zkey_array ang_mom]. *)
val size_of_shell : t -> int
(** Number of contracted functions in the shell: length of {!norm_coef_scale}. *)

View File

@ -43,7 +43,7 @@ val norm_sq : t -> float
val norm_scales : t -> float array
(* norm_coef.(i) / norm_coef.(0) *)
val totAngMom : t -> AngularMomentum.t
val ang_mom : t -> AngularMomentum.t
(* Total angular Momentum *)
val monocentric : t -> bool

View File

@ -17,10 +17,10 @@ let of_nuclei_and_general_basis nucl bas =
let contracted_shells =
Array.map (fun (e, center) ->
List.assoc e bas
|> Array.map (fun (totAngMom, shell) ->
|> Array.map (fun (ang_mom, shell) ->
let lc =
Array.map (fun Gb.{exponent ; coefficient} ->
coefficient, Ps.make totAngMom center exponent) shell
coefficient, Ps.make ang_mom center exponent) shell
in
let result = Cs.make ~index:!index_ lc in
index_ := !index_ + Cs.size_of_shell result;
@ -32,16 +32,16 @@ let of_nuclei_and_general_basis nucl bas =
in
let atomic_shells = lazy(
let uniq_center_angmom =
Array.map (fun x -> Cs.center x, Cs.totAngMom x) contracted_shells
Array.map (fun x -> Cs.center x, Cs.ang_mom x) contracted_shells
|> Array.to_list
|> List.sort_uniq compare
in
let csl =
Array.to_list contracted_shells
in
List.map (fun (center, totAngMom) ->
List.map (fun (center, ang_mom) ->
let a =
List.filter (fun x -> Cs.center x = center && Cs.totAngMom x = totAngMom) csl
List.filter (fun x -> Cs.center x = center && Cs.ang_mom x = ang_mom) csl
|> Array.of_list
in
As.make ~index:(Cs.index a.(0)) a

View File

@ -5,7 +5,7 @@ type t = {
expo : float array;
coef : float array;
center : Coordinate.t;
totAngMom : AngularMomentum.t;
ang_mom : AngularMomentum.t;
norm_coef : float array;
norm_coef_scale : float array;
index : int;
@ -32,10 +32,10 @@ let make ?(index=0) lc =
if not (unique_center (Array.length prim - 1)) then
invalid_arg "ContractedShell.make Coordinate.t differ";
let totAngMom = Ps.totAngMom prim.(0) in
let ang_mom = Ps.ang_mom prim.(0) in
let rec unique_angmom = function
| 0 -> true
| i -> if Ps.totAngMom prim.(i) = totAngMom then unique_angmom (i-1) else false
| i -> if Ps.ang_mom prim.(i) = ang_mom then unique_angmom (i-1) else false
in
if not (unique_angmom (Array.length prim - 1)) then
invalid_arg "ContractedShell.make: AngularMomentum.t differ";
@ -47,7 +47,7 @@ let make ?(index=0) lc =
in
let norm_coef_scale = Ps.norm_scales prim.(0)
in
{ index ; expo ; coef ; center ; totAngMom ; norm_coef ;
{ index ; expo ; coef ; center ; ang_mom ; norm_coef ;
norm_coef_scale ; prim }
@ -61,7 +61,7 @@ let coefficients x = x.coef
let center x = x.center
let totAngMom x = x.totAngMom
let ang_mom x = x.ang_mom
let size x = Array.length x.prim
@ -85,18 +85,18 @@ let pp_debug ppf x =
fprintf ppf "@[<2>expo =@ %a ;@]@ " pp_float_array_size x.expo;
fprintf ppf "@[<2>coef =@ %a ;@]@ " pp_float_array_size x.coef;
fprintf ppf "@[<2>center =@ %a ;@]@ " Co.pp_angstrom x.center;
fprintf ppf "@[<2>totAngMom =@ %a ;@]@ " Am.pp_string x.totAngMom;
fprintf ppf "@[<2>ang_mom =@ %a ;@]@ " Am.pp_string x.ang_mom;
fprintf ppf "@[<2>norm_coef =@ %a ;@]@ " pp_float_array_size x.norm_coef;
fprintf ppf "@[<2>norm_coef_scale =@ %a ;@]@ " pp_float_array_size x.norm_coef_scale;
fprintf ppf "@[<2>index =@ %d ;@]@ " x.index;
fprintf ppf "}@,@]"
let pp ppf s =
(match s.totAngMom with
(match s.ang_mom with
| Am.S -> fprintf ppf "@[%3d@] " (s.index+1)
| _ -> fprintf ppf "@[%3d-%-3d@]" (s.index+1) (s.index+(Array.length s.norm_coef_scale))
);
fprintf ppf "@[%a@ %a@]@[" Am.pp_string s.totAngMom Co.pp s.center;
fprintf ppf "@[%a@ %a@]@[" Am.pp_string s.ang_mom Co.pp s.center;
Array.iter2 (fun e c -> fprintf ppf "@[%16.8e %16.8e@]@;" e c) s.expo s.coef;
fprintf ppf "@]"

View File

@ -40,7 +40,7 @@ val index : t -> int
val center : t -> Coordinate.t
(** Coordinate of the center {% $\mathbf{A} = (X_A,Y_A,Z_A)$ %}. *)
val totAngMom : t -> AngularMomentum.t
val ang_mom : t -> AngularMomentum.t
(** Total angular momentum : {% $l = n_x + n_y + n_z$ %}. *)
val size : t -> int
@ -60,7 +60,7 @@ val normalizations : t -> float array
val norm_scales : t -> float array
(** Scaling factors {% $f(n_x,n_y,n_z)$ %}, given in the same order as
[AngularMomentum.zkey_array totAngMom]. *)
[AngularMomentum.zkey_array ang_mom]. *)
val size_of_shell : t -> int
(** Number of contracted functions in the shell: length of {!norm_coef_scale}. *)

View File

@ -47,6 +47,7 @@ let make ?(cutoff=1.e-32) s_a s_b =
| coefs_and_shell_pairs -> Some { shell_a = s_a ; shell_b = s_b ; coefs_and_shell_pairs }
let shell_a x = x.shell_a
let shell_b x = x.shell_b
let coefs_and_shell_pairs x = x.coefs_and_shell_pairs
@ -63,20 +64,20 @@ let exponents_inv x =
List.map (fun (_,sp) -> Psp.exponent_inv sp) x.coefs_and_shell_pairs
|> Array.of_list
let center_ab x =
let a_minus_b x =
match x.coefs_and_shell_pairs with
| [] -> assert false
| (_,sp)::_ -> Psp.a_minus_b sp
let norm_sq x =
let a_minus_b_sq x =
match x.coefs_and_shell_pairs with
| [] -> assert false
| (_,sp)::_ -> Psp.a_minus_b_sq sp
let totAngMom x =
let ang_mom x =
match x.coefs_and_shell_pairs with
| [] -> assert false
| (_,sp)::_ -> Psp.totAngMom sp
| (_,sp)::_ -> Psp.ang_mom sp
let norm_scales x =
match x.coefs_and_shell_pairs with
@ -89,6 +90,7 @@ let monocentric x =
| (_,sp)::_ -> Psp.monocentric sp
(** Returns an integer characteristic of a contracted shell pair *)
let hash a =
Array.map Hashtbl.hash a
@ -151,22 +153,9 @@ let unique sp =
aux [] sp
(** A map from a shell pair hash to the list of indices in the array
of shell pairs.
*)
let indices sp =
let map =
Hashtbl.create 129
in
Array.iteri (fun i s ->
Array.iteri (fun j shell_p ->
let key =
hash shell_p
in
Hashtbl.add map key (i,j); ) s
) sp;
map
let zkey_array x =
Am.zkey_array (Am.Doublet
Cs.(ang_mom x.shell_a, ang_mom x.shell_b)
)

View File

@ -26,6 +26,7 @@ val make : ?cutoff:float -> ContractedShell.t -> ContractedShell.t -> t option
[None].
*)
val of_contracted_shell_array : ContractedShell.t array -> t option array array
(** Creates all possible contracted shell pairs from a list of contracted shells.
If a shell pair is not significant, sets the value to [None]:
@ -60,21 +61,25 @@ val coefficients : t -> float array
val exponents_inv : t -> float array
val center_ab : t -> Coordinate.t
val a_minus_b : t -> Coordinate.t
(* A-B *)
val norm_sq : t -> float
val a_minus_b_sq : t -> float
(* |A-B|^2 *)
val norm_scales : t -> float array
(* normalizations.(i) / normalizations.(0) *)
val totAngMom : t -> AngularMomentum.t
val ang_mom : t -> AngularMomentum.t
(* Total angular Momentum *)
val monocentric : t -> bool
(** If true, the two contracted shells have the same center. *)
val zkey_array : t -> Zkey.t array
(** Returns the array of Zkeys associated with the contracted shell pair. *)
(*
val hash : t -> int array
val cmp : t -> t -> int

View File

@ -0,0 +1,75 @@
type t =
{
shell_pair_p: ContractedShellPair.t ;
shell_pair_q: ContractedShellPair.t ;
shell_a : ContractedShell.t ;
shell_b : ContractedShell.t ;
shell_c : ContractedShell.t ;
shell_d : ContractedShell.t ;
ang_mom : AngularMomentum.t ;
coefs_and_shell_pair_couples : (float * PrimitiveShellPairCouple.t) list ;
}
module Am = AngularMomentum
module Co = Coordinate
module Cs = ContractedShell
module Csp = ContractedShellPair
module Pspc = PrimitiveShellPairCouple
let make ?(cutoff=Constants.epsilon) shell_pair_p shell_pair_q =
let ang_mom =
Am.(Csp.ang_mom shell_pair_p + Csp.ang_mom shell_pair_q)
in
let shell_a = Csp.shell_a shell_pair_p
and shell_b = Csp.shell_b shell_pair_p
and shell_c = Csp.shell_a shell_pair_q
and shell_d = Csp.shell_b shell_pair_q
in
let cutoff = 1.e-3 *. cutoff in
let coefs_and_shell_pair_couples =
List.map (fun (c_ab, sp_ab) ->
List.map (fun (c_cd, sp_cd) ->
let coef_prod = c_ab *. c_cd in
if abs_float coef_prod < cutoff then None
else Some (coef_prod, Pspc.make sp_ab sp_cd)
) (Csp.coefs_and_shell_pairs shell_pair_q)
) (Csp.coefs_and_shell_pairs shell_pair_p)
|> List.concat
|> List.filter (function None -> false | _ -> true)
|> List.map (function None -> assert false | Some x -> x)
in
match coefs_and_shell_pair_couples with
| [] -> None
| _ -> Some { shell_pair_p ; shell_pair_q ; ang_mom ;
shell_a ; shell_b ; shell_c ; shell_d ;
coefs_and_shell_pair_couples ;
}
let coefs_and_shell_pair_couples t = t.coefs_and_shell_pair_couples
let monocentric t =
Csp.monocentric t.shell_pair_p && Csp.monocentric t.shell_pair_q &&
Csp.a_minus_b t.shell_pair_p = Csp.a_minus_b t.shell_pair_q
let ang_mom t = t.ang_mom
let shell_pair_p t = t.shell_pair_p
let shell_pair_q t = t.shell_pair_q
let shell_a t = t.shell_a
let shell_b t = t.shell_b
let shell_c t = t.shell_c
let shell_d t = t.shell_d
let zkey_array t =
match t.coefs_and_shell_pair_couples with
| (_,f)::_ -> Pspc.zkey_array f
| _ -> invalid_arg "ContractedShellPairCouple.zkey_array"
let norm_scales t =
match t.coefs_and_shell_pair_couples with
| (_,f)::_ -> Pspc.norm_scales f
| _ -> invalid_arg "ContractedShellPairCouple.norm_scales"

View File

@ -0,0 +1,61 @@
(** Data structure describing a couple of contracted shells pairs.
A contracted shell pair couple is the cartesian product between two sets of functions, one
set over electron one and one set over electron two. Both sets are contracted shell
pairs.
These are usually called {e shell quartets} in the literature, but we prefer to use
{e pair} for two functions with the same electron, and {e couple} for two functions
acting on different electrons, since they will be coupled by a two-electron operator.
*)
type t
val make : ?cutoff:float -> ContractedShellPair.t -> ContractedShellPair.t -> t option
(** Creates a contracted shell pair couple using two contracted shell pairs.
*)
val ang_mom : t -> AngularMomentum.t
(** Total angular momentum of the shell pair couple: sum of the angular momenta of
all the shells. *)
val shell_a : t -> ContractedShell.t
(** Returns the first contracted shell of the first shell pair. *)
val shell_b : t -> ContractedShell.t
(** Returns the second contracted shell of the first shell pair. *)
val shell_c : t -> ContractedShell.t
(** Returns the first contracted shell of the second shell pair. *)
val shell_d : t -> ContractedShell.t
(** Returns the second contracted shell of the second shell pair. *)
val shell_pair_p : t -> ContractedShellPair.t
(** Returns the first contracted shell pair that was used to build the shell pair. *)
val shell_pair_q : t -> ContractedShellPair.t
(** Returns the second contracted shell pair that was used to build the shell pair. *)
val monocentric : t -> bool
(** True if all four contracted shells have the same center. *)
val coefs_and_shell_pair_couples : t -> (float * PrimitiveShellPairCouple.t) list
(** Returns the list of significant shell pair couples. *)
val zkey_array : t -> Zkey.t array
(** Returns the array of {!Zkey.t} relative to the four shells of the
shell pair couple.
*)
val norm_scales : t -> float array
(** Scaling factors of normalization coefficients inside the shell. The
ordering is the same as {!zkey_array}.
*)

View File

@ -221,10 +221,10 @@ let of_basis basis =
)
else
out := !out + 1;
) Am.(zkey_array (Singlet (Cs.totAngMom shell.(l))))
) Am.(zkey_array (Singlet (Cs.totAngMom shell.(k))))
) Am.(zkey_array (Singlet (Cs.totAngMom shell.(j))))
) Am.(zkey_array (Singlet (Cs.totAngMom shell.(i))))
) Am.(zkey_array (Singlet (Cs.ang_mom shell.(l))))
) Am.(zkey_array (Singlet (Cs.ang_mom shell.(k))))
) Am.(zkey_array (Singlet (Cs.ang_mom shell.(j))))
) Am.(zkey_array (Singlet (Cs.ang_mom shell.(i))))
with NullIntegral -> ()
done;
done;
@ -280,7 +280,7 @@ let to_file ~filename basis =
let oc = open_out filename in
let zkey = Array.map (fun b ->
let result =
Angular_momentum.(zkey_array (Kind_1 b.totAngMom))
Angular_momentum.(zkey_array (Kind_1 b.ang_mom))
in
{ n=Array.length result ; cls=result }
) basis
@ -378,7 +378,7 @@ let to_file ~filename basis =
let xto_file ~filename basis =
let zkey = Array.map (fun b ->
let result =
Angular_momentum.(zkey_array (Kind_1 b.totAngMom))
Angular_momentum.(zkey_array (Kind_1 b.ang_mom))
in
{ n=Array.length result ; cls=result }
) basis

View File

@ -28,9 +28,7 @@ let contracted_class shell_a shell_b : float Zmap.t =
| Some shell_p ->
begin
(* Pre-computation of integral class indices *)
let class_indices =
Am.zkey_array (Am.Doublet Cs.(totAngMom shell_a, totAngMom shell_b))
in
let class_indices = Csp.zkey_array shell_p in
let contracted_class =
Array.make (Array.length class_indices) 0.
@ -39,8 +37,8 @@ let contracted_class shell_a shell_b : float Zmap.t =
(* Compute all integrals in the shell for each pair of significant shell pairs *)
let sp = Csp.shell_pairs shell_p in
let center_ab =
Csp.center_ab shell_p
let a_minus_b =
Csp.a_minus_b shell_p
in
let norm_coef_scales =
Csp.norm_scales shell_p
@ -78,7 +76,7 @@ let contracted_class shell_a shell_b : float Zmap.t =
let xyz = xyz_of_int k in
Overlap_primitives.hvrr (a, b)
expo_inv
(Co.get xyz center_ab,
(Co.get xyz a_minus_b,
Co.get xyz center_pa)
in
let f k =
@ -154,8 +152,8 @@ let of_basis basis =
in
result.{i_c,j_c} <- value;
result.{j_c,i_c} <- value;
) (Am.zkey_array (Singlet (Cs.totAngMom shell.(i))))
) (Am.zkey_array (Singlet (Cs.totAngMom shell.(j))))
) (Am.zkey_array (Singlet (Cs.ang_mom shell.(i))))
) (Am.zkey_array (Singlet (Cs.ang_mom shell.(j))))
done;
done;
Mat.detri result;

View File

@ -87,8 +87,8 @@ let of_basis_nuclei basis nuclei =
in
eni_array.{j_c,i_c} <- value;
eni_array.{i_c,j_c} <- value;
) (Am.zkey_array (Singlet (Cs.totAngMom shell.(j))))
) (Am.zkey_array (Singlet (Cs.totAngMom shell.(i))))
) (Am.zkey_array (Singlet (Cs.ang_mom shell.(j))))
) (Am.zkey_array (Singlet (Cs.ang_mom shell.(i))))
done;
done;
Mat.detri eni_array;

View File

@ -101,15 +101,10 @@ let contracted_class_shell_pair ~zero_m shell_p geometry : float Zmap.t =
let shell_a = Csp.shell_a shell_p
and shell_b = Csp.shell_b shell_p
in
let maxm =
Am.(Cs.totAngMom shell_a + Cs.totAngMom shell_b)
|> Am.to_int
in
let maxm = Am.to_int (Csp.ang_mom shell_p) in
(* Pre-computation of integral class indices *)
let class_indices =
Am.zkey_array (Am.Doublet Cs.(totAngMom shell_a, totAngMom shell_b))
in
let class_indices = Csp.zkey_array shell_p in
let contracted_class =
Array.make (Array.length class_indices) 0.;
@ -119,7 +114,7 @@ let contracted_class_shell_pair ~zero_m shell_p geometry : float Zmap.t =
let norm_scales_p = Csp.norm_scales shell_p in
let center_ab = Csp.center_ab shell_p in
let center_ab = Csp.a_minus_b shell_p in
List.iter (fun (coef_prod, psp) ->
try
@ -146,7 +141,7 @@ let contracted_class_shell_pair ~zero_m shell_p geometry : float Zmap.t =
let zero_m_array =
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
in
match Cs.(totAngMom shell_a, totAngMom shell_b) with
match Cs.(ang_mom shell_a, ang_mom shell_b) with
| Am.(S,S) ->
let integral = zero_m_array.(0) in
contracted_class.(0) <- contracted_class.(0) -. coef_prod *. integral *. charge

View File

@ -28,16 +28,14 @@ let contracted_class shell_a shell_b : float Zmap.t =
begin
(* Pre-computation of integral class indices *)
let class_indices =
Am.zkey_array (Am.Doublet Cs.(totAngMom shell_a, totAngMom shell_b))
in
let class_indices = Csp.zkey_array shell_p in
let contracted_class =
Array.make (Array.length class_indices) 0.
in
let center_ab =
Csp.center_ab shell_p
let a_minus_b =
Csp.a_minus_b shell_p
in
let norm_coef_scales =
Csp.norm_scales shell_p
@ -66,7 +64,7 @@ let contracted_class shell_a shell_b : float Zmap.t =
let xyz = xyz_of_int k in
Overlap_primitives.hvrr (Po.get xyz angMomA, Po.get xyz angMomB)
expo_inv
(Co.get xyz center_ab,
(Co.get xyz a_minus_b,
Co.get xyz center_pa)
in
let norm = norm_coef_scales.(i) in
@ -120,8 +118,8 @@ let of_basis basis =
in
result.{i_c,j_c} <- value;
result.{j_c,i_c} <- value;
) (Am.zkey_array (Singlet (Cs.totAngMom shell.(i))))
) (Am.zkey_array (Singlet (Cs.totAngMom shell.(j))))
) (Am.zkey_array (Singlet (Cs.ang_mom shell.(i))))
) (Am.zkey_array (Singlet (Cs.ang_mom shell.(j))))
done;
done;
Mat.detri result;

View File

@ -7,15 +7,15 @@ type t = {
normalization : float;
norm_scales : float array lazy_t;
center : Coordinate.t;
totAngMom : AngularMomentum.t;
ang_mom : AngularMomentum.t;
}
module Am = AngularMomentum
let compute_norm_coef alpha totAngMom =
let compute_norm_coef alpha ang_mom =
let atot =
Am.to_int totAngMom
Am.to_int ang_mom
in
let factor int_array =
let dfa = Array.map (fun j ->
@ -37,15 +37,15 @@ let compute_norm_coef alpha totAngMom =
in f
let make totAngMom center exponent =
let make ang_mom center exponent =
let norm_coef_func =
compute_norm_coef exponent totAngMom
compute_norm_coef exponent ang_mom
in
let norm =
1. /. norm_coef_func [| Am.to_int totAngMom ; 0 ; 0 |]
1. /. norm_coef_func [| Am.to_int ang_mom ; 0 ; 0 |]
in
let powers =
Am.zkey_array (Am.Singlet totAngMom)
Am.zkey_array (Am.Singlet ang_mom)
in
let norm_scales = lazy (
Array.map (fun a ->
@ -53,12 +53,12 @@ let make totAngMom center exponent =
) powers )
in
let normalization = 1. /. norm in
{ exponent ; normalization ; norm_scales ; center ; totAngMom }
{ exponent ; normalization ; norm_scales ; center ; ang_mom }
let to_string s =
let coord = s.center in
Printf.sprintf "%1s %8.3f %8.3f %8.3f %16.8e" (Am.to_string s.totAngMom)
Printf.sprintf "%1s %8.3f %8.3f %8.3f %16.8e" (Am.to_string s.ang_mom)
(get X coord) (get Y coord) (get Z coord) s.exponent
@ -74,7 +74,7 @@ let exponent x = x.exponent
let center x = x.center
let totAngMom x = x.totAngMom
let ang_mom x = x.ang_mom
let norm x = 1. /. x.normalization

View File

@ -33,7 +33,7 @@ val exponent : t -> float
val center : t -> Coordinate.t
(** Coordinate {% $\mathbf{A}$ %}.of the center. *)
val totAngMom : t -> AngularMomentum.t
val ang_mom : t -> AngularMomentum.t
(** Total angular momentum : {% $l = n_x + n_y + n_z$ %}. *)
val norm : t -> float
@ -54,7 +54,7 @@ val norm_scales : t -> float array
(** Scaling factors {% $f(n_x,n_y,n_z)$ %} adjusting the normalization coefficient
for the powers of {% $x,y,z$ %}. The normalization coefficients of the
functions of the shell are given by {% $\mathcal{N}\times f$ %}. They are
given in the same order as [AngularMomentum.zkey_array totAngMom]:
given in the same order as [AngularMomentum.zkey_array ang_mom]:
{% \\[ f(n_x,n_y,n_z) = \frac{|| g_{l,0,0}(\mathbf{r}) ||}{|| g_{n_x,n_y,n_z}(\mathbf{r}) ||} \\] %}
*)

View File

@ -12,7 +12,7 @@ type t = {
norm_scales : float array lazy_t;
normalization : float; (* norm_coef_a * norm_coef_b * g, with
g = (pi/(alpha+beta))^(3/2) exp (-|A-B|^2 * alpha*beta/(alpha+beta)) *)
totAngMom : AngularMomentum.t;
ang_mom : AngularMomentum.t;
shell_a : PrimitiveShell.t;
shell_b : PrimitiveShell.t;
}
@ -30,7 +30,7 @@ let hash a =
let equivalent a b =
a.exponent = b.exponent &&
a.totAngMom = b.totAngMom &&
a.ang_mom = b.ang_mom &&
a.normalization = b.normalization &&
a.center = b.center &&
a.center_minus_a = b.center_minus_a &&
@ -59,8 +59,8 @@ let create_make_of p_a p_b =
|> Array.concat
) in
let totAngMom =
Am.( Ps.totAngMom p_a + Ps.totAngMom p_b )
let ang_mom =
Am.( Ps.ang_mom p_a + Ps.ang_mom p_b )
in
function p_a ->
@ -109,7 +109,7 @@ let create_make_of p_a p_b =
in
Some {
totAngMom ;
ang_mom ;
exponent ; exponent_inv ; center ; center_minus_a ; a_minus_b ;
a_minus_b_sq ; normalization ; norm_scales ; shell_a = p_a;
shell_b = p_b }
@ -136,7 +136,7 @@ let monocentric x =
Ps.center x.shell_a = Ps.center x.shell_b
let totAngMom x = x.totAngMom
let ang_mom x = x.ang_mom
let a_minus_b x = x.a_minus_b
@ -154,3 +154,11 @@ let shell_a x = x.shell_a
let shell_b x = x.shell_b
let zkey_array x =
Am.zkey_array (Am.Doublet
Ps.(ang_mom x.shell_a, ang_mom x.shell_b)
)

View File

@ -1,7 +1,7 @@
(** Data structure describing a pair of primitive shells.
A primitive shell pair is the cartesian product between two sets of functions, each
set containing all the functions of a primitive shell.
set containing all the functions of a primitive shell. These are one-electron functions.
{% \\[
\left\\{ p_{k_x,k_y,k_z}(\mathbf{r}) \right\\} =
@ -24,7 +24,7 @@ where
{!a_minus_b}, {!a_minus_b_sq} and {!norm_coef_scale} depend only on the
centering of the two shells, and {!totAngMom} only depends on the angular
centering of the two shells, and {!ang_mom} only depends on the angular
momenta of the two shells. Hence, these quantities need to be computed only
once when a {!ContractedShellPair.t} is built. Hence, there is the
{!create_make_of} function which creates a [make] function which is suitable
@ -52,7 +52,7 @@ val create_make_of : PrimitiveShell.t -> PrimitiveShell.t ->
*)
val totAngMom : t -> AngularMomentum.t
val ang_mom : t -> AngularMomentum.t
(** Total angular momentum of the shell pair: sum of the angular momenta of
the shells. *)
@ -104,3 +104,6 @@ val hash : t -> int
val cmp : t -> t -> int
(** Arbitray comparison function for sorting. *)
val zkey_array : t -> Zkey.t array
(** Returns the array of Zkeys associated with the shell pair. *)

View File

@ -0,0 +1,71 @@
exception NullContribution
type t =
{
shell_pair_p: PrimitiveShellPair.t ;
shell_pair_q: PrimitiveShellPair.t ;
shell_a : PrimitiveShell.t ;
shell_b : PrimitiveShell.t ;
shell_c : PrimitiveShell.t ;
shell_d : PrimitiveShell.t ;
ang_mom : AngularMomentum.t ;
zkey_array : Zkey.t array lazy_t;
}
module Am = AngularMomentum
module Co = Coordinate
module Ps = PrimitiveShell
module Psp = PrimitiveShellPair
let make shell_pair_p shell_pair_q =
let ang_mom =
Am.(Psp.ang_mom shell_pair_p + Psp.ang_mom shell_pair_q)
in
let shell_a = Psp.shell_a shell_pair_p
and shell_b = Psp.shell_b shell_pair_p
and shell_c = Psp.shell_a shell_pair_q
and shell_d = Psp.shell_b shell_pair_q
in
let zkey_array = lazy (
Am.zkey_array (Am.Quartet
Ps.(ang_mom shell_a, ang_mom shell_b,
ang_mom shell_c, ang_mom shell_d)
)
)
in
{ shell_pair_p ; shell_pair_q ; ang_mom ;
shell_a ; shell_b ; shell_c ; shell_d ;
zkey_array ;
}
let monocentric t =
Psp.monocentric t.shell_pair_p && Psp.monocentric t.shell_pair_q &&
Psp.center t.shell_pair_p = Psp.center t.shell_pair_q
let ang_mom t = t.ang_mom
let shell_pair_p t = t.shell_pair_p
let shell_pair_q t = t.shell_pair_q
let shell_a t = t.shell_a
let shell_b t = t.shell_b
let shell_c t = t.shell_c
let shell_d t = t.shell_d
let p_minus_q t =
let p = Psp.center t.shell_pair_p
and q = Psp.center t.shell_pair_q
in Co.(p |- q)
let zkey_array t = Lazy.force t.zkey_array
let norm_scales t =
let norm_coef_scale_p_list = Array.to_list (Psp.norm_scales t.shell_pair_p) in
let norm_coef_scale_q = Psp.norm_scales t.shell_pair_q in
List.map (fun v1 -> Array.map (fun v2 -> v1 *. v2) norm_coef_scale_q)
norm_coef_scale_p_list
|> Array.concat

View File

@ -0,0 +1,62 @@
(** Data structure describing a couple of primitive shells pairs.
A primitive shell pair couple is the cartesian product between two sets of functions, one
set over electron one and one set over electron two. Both sets are primitive shell
pairs.
These are usually called {e shell quartets} in the literature, but we prefer to use
{e pair} for two functions with the same electron, and {e couple} for two functions
acting on different electrons, since they will be coupled by a two-electron operator.
*)
type t
val make : PrimitiveShellPair.t -> PrimitiveShellPair.t -> t
(** Creates a primitive shell pair couple using two primitive shell pairs.
*)
val ang_mom : t -> AngularMomentum.t
(** Total angular momentum of the shell pair couple: sum of the angular momenta of
all the shells. *)
val shell_a : t -> PrimitiveShell.t
(** Returns the first primitive shell of the first shell pair. *)
val shell_b : t -> PrimitiveShell.t
(** Returns the second primitive shell of the first shell pair. *)
val shell_c : t -> PrimitiveShell.t
(** Returns the first primitive shell of the second shell pair. *)
val shell_d : t -> PrimitiveShell.t
(** Returns the second primitive shell of the second shell pair. *)
val shell_pair_p : t -> PrimitiveShellPair.t
(** Returns the first primitive shell pair that was used to build the shell pair. *)
val shell_pair_q : t -> PrimitiveShellPair.t
(** Returns the second primitive shell pair that was used to build the shell pair. *)
val p_minus_q : t -> Coordinate.t
(** {% $\mathbf{P-Q}$ %}. *)
val monocentric : t -> bool
(** True if all four primitive shells have the same center. *)
val zkey_array : t -> Zkey.t array
(** Returns the array of {!Zkey.t} relative to the four shells of the
shell pair couple.
*)
val norm_scales : t -> float array
(** Scaling factors of normalization coefficients inside the shell. The
ordering is the same as {!zkey_array}.
*)

View File

@ -1,15 +1,18 @@
open Util
module Am = AngularMomentum
module Co = Coordinate
module Cs = ContractedShell
module Csp = ContractedShellPair
module Po = Powers
module Psp = PrimitiveShellPair
module Ps = PrimitiveShell
module Am = AngularMomentum
module Co = Coordinate
module Cs = ContractedShell
module Csp = ContractedShellPair
module Cspc = ContractedShellPairCouple
module Po = Powers
module Psp = PrimitiveShellPair
module Pspc = PrimitiveShellPairCouple
module Ps = PrimitiveShell
let cutoff = Constants.integrals_cutoff
let cutoff2 = cutoff *. cutoff
let empty = Zmap.create 0
exception NullQuartet
@ -275,50 +278,39 @@ let rec hvrr_two_e
let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
let shell_a = Csp.shell_a shell_p
and shell_b = Csp.shell_b shell_p
and shell_c = Csp.shell_a shell_q
and shell_d = Csp.shell_b shell_q
in
let maxm = Am.(Csp.totAngMom shell_p + Csp.totAngMom shell_q |> to_int) in
match Cspc.make ~cutoff shell_p shell_q with
| None -> empty
| Some shell_pair_couple ->
(* Pre-computation of integral class indices *)
let class_indices =
Am.zkey_array (Am.Quartet
Cs.(totAngMom shell_a, totAngMom shell_b,
totAngMom shell_c, totAngMom shell_d ))
in
let maxm = Am.to_int (Cspc.ang_mom shell_pair_couple) in
let contracted_class =
Array.make (Array.length class_indices) 0.;
in
(* Pre-computation of integral class indices *)
let class_indices = Cspc.zkey_array shell_pair_couple in
let monocentric =
Csp.monocentric shell_p && Csp.monocentric shell_q &&
Cs.center (Csp.shell_a shell_p) = Cs.center (Csp.shell_a shell_q)
in
(* Compute all integrals in the shell for each pair of significant shell pairs *)
let norm_coef_scale_p_list = Array.to_list (Csp.norm_scales shell_p) in
let norm_coef_scale_q = Csp.norm_scales shell_q in
let center_ab = Csp.center_ab shell_p in
List.iter (fun (c_ab, sp_ab) ->
let expo_b = Ps.exponent (Psp.shell_b sp_ab)
and expo_inv_p = Psp.exponent_inv sp_ab
and center_pa = Psp.center_minus_a sp_ab
let contracted_class =
Array.make (Array.length class_indices) 0.;
in
List.iter (fun (c_cd, sp_cd) ->
let monocentric =
Cspc.monocentric shell_pair_couple
in
let coef_prod = c_ab *. c_cd in
(* Compute all integrals in the shell for each pair of significant shell pairs *)
(** Screening on the product of coefficients *)
try
if (abs_float coef_prod) < 1.e-3 *. cutoff then
raise NullQuartet;
let center_ab = Csp.a_minus_b shell_p
and center_cd = Csp.a_minus_b shell_q
in
let norm_scales = Cspc.norm_scales shell_pair_couple in
List.iter (fun (coef_prod, spc) ->
let sp_ab = Pspc.shell_pair_p spc
and sp_cd = Pspc.shell_pair_q spc
in
let expo_inv_p = Psp.exponent_inv sp_ab
in
let center_pq = Co.(Psp.center sp_ab |- Psp.center sp_cd) in
let norm_pq_sq = Co.dot center_pq center_pq in
@ -330,23 +322,19 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
in
begin
match Cs.(totAngMom shell_a, totAngMom shell_b,
totAngMom shell_c, totAngMom shell_d) with
| Am.(S,S,S,S) ->
let integral =
zero_m_array.(0)
in
match Cspc.ang_mom shell_pair_couple with
| Am.S ->
let integral = zero_m_array.(0) in
contracted_class.(0) <- contracted_class.(0) +. coef_prod *. integral
| _ ->
let expo_d = Ps.exponent (Psp.shell_b sp_cd) in
let map_1d = Zmap.create (4*maxm) in
let map_2d = Zmap.create (Array.length class_indices) in
let center_cd = Psp.a_minus_b sp_cd in
let center_qc = Psp.center_minus_a sp_cd in
let norm_coef_scale =
List.map (fun v1 -> Array.map (fun v2 -> v1 *. v2) norm_coef_scale_q)
norm_coef_scale_p_list
|> Array.concat
let expo_b = Ps.exponent (Psp.shell_b sp_ab)
and expo_d = Ps.exponent (Psp.shell_b sp_cd)
and center_pa = Psp.center_minus_a sp_ab
in
let map_1d = Zmap.create (4*maxm)
and map_2d = Zmap.create (Array.length class_indices)
in
let center_qc = Psp.center_minus_a sp_cd
in
(* Compute the integral class from the primitive shell quartet *)
@ -363,7 +351,7 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
if ( ((1 land angMom_a.Po.x + angMom_b.Po.x + angMom_c.Po.x + angMom_d.Po.x)=1) ||
((1 land angMom_a.Po.y + angMom_b.Po.y + angMom_c.Po.y + angMom_d.Po.y)=1) ||
((1 land angMom_a.Po.z + angMom_b.Po.z + angMom_c.Po.z + angMom_d.Po.z)=1)
) then
) then
raise NullQuartet
end;
@ -393,7 +381,7 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
*)
let norm = norm_coef_scale.(i) in
let norm = norm_scales.(i) in
let coef_prod = coef_prod *. norm in
let integral =
@ -410,15 +398,13 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
with NullQuartet -> ()
)
end
with NullQuartet -> ()
) (Csp.coefs_and_shell_pairs shell_q)
) (Csp.coefs_and_shell_pairs shell_p);
) (Cspc.coefs_and_shell_pair_couples shell_pair_couple);
let result =
Zmap.create (Array.length contracted_class)
in
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
result
let result =
Zmap.create (Array.length contracted_class)
in
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
result
@ -431,6 +417,6 @@ let contracted_class ~zero_m shell_a shell_b shell_c shell_d : float Zmap.t =
match shell_p, shell_q with
| Some shell_p, Some shell_q ->
contracted_class_shell_pairs ~zero_m shell_p shell_q
| _ -> Zmap.create 0
| _ -> empty

View File

@ -2,19 +2,21 @@ open Util
open Lacaml.D
open Bigarray
module Am = AngularMomentum
module Co = Coordinate
module Cs = ContractedShell
module Csp = ContractedShellPair
module Po = Powers
module Psp = PrimitiveShellPair
module Ps = PrimitiveShell
module Am = AngularMomentum
module Co = Coordinate
module Cs = ContractedShell
module Csp = ContractedShellPair
module Cspc = ContractedShellPairCouple
module Po = Powers
module Psp = PrimitiveShellPair
module Ps = PrimitiveShell
exception NullQuartet
exception Found
let cutoff = Constants.integrals_cutoff
let cutoff2 = cutoff *. cutoff
let empty = Zmap.create 0
let at_least_one_valid arr =
try
@ -555,57 +557,10 @@ let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
let shell_a = Csp.shell_a shell_p
and shell_b = Csp.shell_b shell_p
and shell_c = Csp.shell_a shell_q
and shell_d = Csp.shell_b shell_q
in
let maxm =
Am.(Csp.totAngMom shell_p + Csp.totAngMom shell_q |> to_int)
in
(* Pre-computation of integral class indices *)
let class_indices =
Am.zkey_array (Am.Quartet
Cs.(totAngMom shell_a, totAngMom shell_b,
totAngMom shell_c, totAngMom shell_d))
in
let contracted_class =
Array.make (Array.length class_indices) 0.;
in
let monocentric =
Csp.monocentric shell_p && Csp.monocentric shell_q &&
Cs.center (Csp.shell_a shell_p) =
Cs.center (Csp.shell_a shell_q)
in
(** Screening on the product of coefficients *)
let coef_max_p =
List.fold_left (fun accu (x,_) ->
if (abs_float x) > accu then (abs_float x) else accu)
0. (Csp.coefs_and_shell_pairs shell_p)
and coef_max_q =
List.fold_left (fun accu (x,_) ->
if (abs_float x) > accu then (abs_float x) else accu)
0. (Csp.coefs_and_shell_pairs shell_q)
in
let filter_p =
let cutoff_p = cutoff /. coef_max_p in
Csp.coefs_and_shell_pairs shell_p
|> List.filter (fun (ck,f) -> abs_float ck > cutoff_p)
and filter_q =
let cutoff_q = cutoff /. coef_max_q in
Csp.coefs_and_shell_pairs shell_q
|> List.filter (fun (ck,f) -> abs_float ck > cutoff_q)
in
let sp = List.map snd filter_p |> Array.of_list
and sq = List.map snd filter_q |> Array.of_list
and cp = List.map fst filter_p |> Array.of_list
and cq = List.map fst filter_q |> Array.of_list
let sp = Csp.shell_pairs shell_p
and sq = Csp.shell_pairs shell_q
and cp = Csp.coefficients shell_p
and cq = Csp.coefficients shell_q
in
let np, nq =
@ -613,207 +568,219 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
Array.length sq
in
try
match Cspc.make ~cutoff shell_p shell_q with
| None -> raise NullQuartet
| Some shell_pair_couple ->
(* Compute all integrals in the shell for each pair of significant shell pairs *)
begin
match Cs.(totAngMom shell_a, totAngMom shell_b,
totAngMom shell_c, totAngMom shell_d) with
| Am.(S,S,S,S) ->
contracted_class.(0) <-
begin
try
let expo_inv_p =
Vec.init np (fun ab -> Psp.exponent_inv sp.(ab-1))
and expo_inv_q =
Vec.init nq (fun cd -> Psp.exponent_inv sq.(cd-1))
in
let coef =
let result = Mat.make0 nq np in
Lacaml.D.ger (Vec.of_array @@ cq) (Vec.of_array @@ cp) result;
result
in
let zm_array = Mat.init_cols np nq (fun i j ->
try
if (abs_float coef.{j,i} ) < 1.e-3*.cutoff then
raise NullQuartet;
let expo_pq_inv =
expo_inv_p.{i} +. expo_inv_q.{j}
in
let center_pq =
Co.(Psp.center sp.(i-1) |- Psp.center sq.(j-1))
in
let norm_pq_sq =
Co.dot center_pq center_pq
in
let zero_m_array =
zero_m ~maxm:0 ~expo_pq_inv ~norm_pq_sq
in
zero_m_array.(0)
with NullQuartet -> 0.
) in
Mat.gemm_trace zm_array coef
with (Invalid_argument _) -> 0.
end
| _ ->
let coef =
Array.init np (fun l -> Array.init nq (fun k -> cq.(k) *. cp.(l)) )
let shell_a = Cspc.shell_a shell_pair_couple
and shell_c = Cspc.shell_c shell_pair_couple
in
let expo_inv_p =
Array.map (fun shell_ab -> Psp.exponent_inv shell_ab) sp
and expo_inv_q =
Array.map (fun shell_cd -> Psp.exponent_inv shell_cd) sq
let maxm = Am.to_int (Cspc.ang_mom shell_pair_couple) in
(* Pre-computation of integral class indices *)
let class_indices = Cspc.zkey_array shell_pair_couple in
let contracted_class =
Array.make (Array.length class_indices) 0.;
in
let expo_b =
Array.map (fun shell_ab -> Ps.exponent (Psp.shell_b shell_ab) ) sp
and expo_d =
Array.map (fun shell_cd -> Ps.exponent (Psp.shell_b shell_cd) ) sq
let monocentric =
Cspc.monocentric shell_pair_couple
in
let norm_coef_scale_p = Csp.norm_scales shell_p in
let center_pq =
let result =
Array.init 3 (fun xyz ->
Array.init np (fun ab ->
let shell_ab = sp.(ab) in
Array.init nq (fun cd ->
let shell_cd = sq.(cd)
(* Compute all integrals in the shell for each pair of significant shell pairs *)
begin
match Cspc.ang_mom shell_pair_couple with
| Am.S ->
contracted_class.(0) <-
begin
try
let expo_inv_p =
Vec.init np (fun ab -> Psp.exponent_inv sp.(ab-1))
and expo_inv_q =
Vec.init nq (fun cd -> Psp.exponent_inv sq.(cd-1))
in
let cpq =
Co.(Psp.center shell_ab |- Psp.center shell_cd)
let coef =
let result = Mat.make0 nq np in
Lacaml.D.ger (Vec.of_array @@ cq) (Vec.of_array @@ cp) result;
result
in
match xyz with
| 0 -> Co.get X cpq;
| 1 -> Co.get Y cpq;
| _ -> Co.get Z cpq;
)
)
)
in function
| Co.X -> result.(0)
| Co.Y -> result.(1)
| Co.Z -> result.(2)
in
let center_pa =
let result =
Array.init 3 (fun xyz ->
Array.init np (fun ab ->
let shell_ab = sp.(ab) in
let cpa =
Co.(Psp.center shell_ab |- Cs.center shell_a)
in
match xyz with
| 0 -> Co.(get X cpa);
| 1 -> Co.(get Y cpa);
| _ -> Co.(get Z cpa);
)
)
in function
| Co.X -> result.(0)
| Co.Y -> result.(1)
| Co.Z -> result.(2)
in
let center_qc =
let result =
Array.init 3 (fun xyz ->
Array.init nq (fun cd ->
let shell_cd = sq.(cd) in
let cqc =
Co.(Psp.center shell_cd |- Cs.center shell_c)
in
match xyz with
| 0 -> Co.(get X cqc);
| 1 -> Co.(get Y cqc);
| _ -> Co.(get Z cqc);
)
)
in function
| Co.X -> result.(0)
| Co.Y -> result.(1)
| Co.Z -> result.(2)
in
let zero_m_array =
let result =
Array.init (maxm+1) (fun _ ->
Array.init np (fun _ -> Array.make nq 0. ) )
in
let empty = Array.make (maxm+1) 0. in
Array.iteri (fun ab shell_ab ->
let zero_m_array_tmp =
Array.mapi (fun cd shell_cd ->
if (abs_float coef.(ab).(cd) < cutoff) then
empty
else
let expo_pq_inv =
expo_inv_p.(ab) +. expo_inv_q.(cd)
in
let norm_pq_sq =
let x = (center_pq X).(ab).(cd)
and y = (center_pq Y).(ab).(cd)
and z = (center_pq Z).(ab).(cd)
let zm_array = Mat.init_cols np nq (fun i j ->
try
if (abs_float coef.{j,i} ) < 1.e-3*.cutoff then
raise NullQuartet;
let expo_pq_inv =
expo_inv_p.{i} +. expo_inv_q.{j}
in
x *. x +. y *. y +. z *. z
in
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
) sq
in
(* Transpose result *)
let coef_ab = coef.(ab) in
for m=0 to maxm do
let result_m_ab = result.(m).(ab)
in
for cd=0 to nq-1 do
result_m_ab.(cd) <- zero_m_array_tmp.(cd).(m) *. coef_ab.(cd)
done
done
) sp;
result
in
let center_pq =
Co.(Psp.center sp.(i-1) |- Psp.center sq.(j-1))
in
let norm_pq_sq =
Co.dot center_pq center_pq
in
let norm =
let norm_coef_scale_q =
Csp.norm_scales shell_q
let zero_m_array =
zero_m ~maxm:0 ~expo_pq_inv ~norm_pq_sq
in
zero_m_array.(0)
with NullQuartet -> 0.
) in
Mat.gemm_trace zm_array coef
with (Invalid_argument _) -> 0.
end
| _ ->
let coef =
Array.init np (fun l -> Array.init nq (fun k -> cq.(k) *. cp.(l)) )
in
Array.to_list norm_coef_scale_p
|> List.map (fun v1 ->
Array.map (fun v2 -> v1 *. v2) norm_coef_scale_q)
|> Array.concat
in
let map_1d = Zmap.create (4*maxm)
and map_2d = Array.init (maxm+1) (fun _ -> Zmap.create (Array.length class_indices))
in
(* Compute the integral class from the primitive shell quartet *)
Array.iteri (fun i key ->
let (angMom_a,angMom_b,angMom_c,angMom_d) =
match Zkey.to_powers key with
| Zkey.Twelve x -> x
| _ -> assert false
let norm = Cspc.norm_scales shell_pair_couple in
let expo_inv_p =
Array.map (fun shell_ab -> Psp.exponent_inv shell_ab) sp
and expo_inv_q =
Array.map (fun shell_cd -> Psp.exponent_inv shell_cd) sq
in
let expo_b =
Array.map (fun shell_ab -> Ps.exponent (Psp.shell_b shell_ab) ) sp
and expo_d =
Array.map (fun shell_cd -> Ps.exponent (Psp.shell_b shell_cd) ) sq
in
let center_pq =
let result =
Array.init 3 (fun xyz ->
Array.init np (fun ab ->
let shell_ab = sp.(ab) in
Array.init nq (fun cd ->
let shell_cd = sq.(cd)
in
let cpq =
Co.(Psp.center shell_ab |- Psp.center shell_cd)
in
match xyz with
| 0 -> Co.get X cpq;
| 1 -> Co.get Y cpq;
| _ -> Co.get Z cpq;
)
)
)
in function
| Co.X -> result.(0)
| Co.Y -> result.(1)
| Co.Z -> result.(2)
in
let center_pa =
let result =
Array.init 3 (fun xyz ->
Array.init np (fun ab ->
let shell_ab = sp.(ab) in
let cpa =
Co.(Psp.center shell_ab |- Cs.center shell_a)
in
match xyz with
| 0 -> Co.(get X cpa);
| 1 -> Co.(get Y cpa);
| _ -> Co.(get Z cpa);
)
)
in function
| Co.X -> result.(0)
| Co.Y -> result.(1)
| Co.Z -> result.(2)
in
let center_qc =
let result =
Array.init 3 (fun xyz ->
Array.init nq (fun cd ->
let shell_cd = sq.(cd) in
let cqc =
Co.(Psp.center shell_cd |- Cs.center shell_c)
in
match xyz with
| 0 -> Co.(get X cqc);
| 1 -> Co.(get Y cqc);
| _ -> Co.(get Z cqc);
)
)
in function
| Co.X -> result.(0)
| Co.Y -> result.(1)
| Co.Z -> result.(2)
in
let zero_m_array =
let result =
Array.init (maxm+1) (fun _ ->
Array.init np (fun _ -> Array.make nq 0. ) )
in
let empty = Array.make (maxm+1) 0. in
Array.iteri (fun ab shell_ab ->
let zero_m_array_tmp =
Array.mapi (fun cd shell_cd ->
if (abs_float coef.(ab).(cd) < cutoff) then
empty
else
let expo_pq_inv =
expo_inv_p.(ab) +. expo_inv_q.(cd)
in
let norm_pq_sq =
let x = (center_pq X).(ab).(cd)
and y = (center_pq Y).(ab).(cd)
and z = (center_pq Z).(ab).(cd)
in
x *. x +. y *. y +. z *. z
in
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
) sq
in
try
if monocentric then
begin
(* Transpose result *)
let coef_ab = coef.(ab) in
for m=0 to maxm do
let result_m_ab = result.(m).(ab)
in
for cd=0 to nq-1 do
result_m_ab.(cd) <- zero_m_array_tmp.(cd).(m) *. coef_ab.(cd)
done
done
) sp;
result
in
let map_1d = Zmap.create (4*maxm)
and map_2d = Array.init (maxm+1) (fun _ -> Zmap.create (Array.length class_indices))
in
(* Compute the integral class from the primitive shell quartet *)
Array.iteri (fun i key ->
let (angMom_a,angMom_b,angMom_c,angMom_d) =
match Zkey.to_powers key with
| Zkey.Twelve x -> x
| _ -> assert false
in
try
if monocentric then
begin
if ( ((1 land angMom_a.x + angMom_b.x + angMom_c.x + angMom_d.x) =1) ||
((1 land angMom_a.y + angMom_b.y + angMom_c.y + angMom_d.y) =1) ||
((1 land angMom_a.z + angMom_b.z + angMom_c.z + angMom_d.z) =1)
) then
raise NullQuartet
end;
) then
raise NullQuartet
end;
(* Schwartz screening *)
if (np+nq> 24) then
(* Schwartz screening *)
if (np+nq> 24) then
(
let schwartz_p =
let key = Zkey.of_powers_twelve
angMom_a angMom_b angMom_a angMom_b
angMom_a angMom_b angMom_a angMom_b
in
match schwartz_p with
| None -> 1.
@ -822,36 +789,37 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
if schwartz_p < cutoff then raise NullQuartet;
let schwartz_q =
let key = Zkey.of_powers_twelve
angMom_c angMom_d angMom_c angMom_d
angMom_c angMom_d angMom_c angMom_d
in
match schwartz_q with
| None -> 1.
| Some schwartz_q -> Zmap.find schwartz_q key
in
if schwartz_p *. schwartz_q < cutoff2 then raise NullQuartet;
);
let integral =
hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
zero_m_array
(expo_b, expo_d)
(expo_inv_p, expo_inv_q)
(Csp.center_ab shell_p,
Csp.center_ab shell_q, center_pq)
(center_pa, center_qc)
map_1d map_2d np nq
in
contracted_class.(i) <- contracted_class.(i) +. integral *. norm.(i)
with NullQuartet -> ()
) class_indices
);
end;
let integral =
hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
zero_m_array
(expo_b, expo_d)
(expo_inv_p, expo_inv_q)
(Csp.a_minus_b shell_p,
Csp.a_minus_b shell_q, center_pq)
(center_pa, center_qc)
map_1d map_2d np nq
in
contracted_class.(i) <- contracted_class.(i) +. integral *. norm.(i)
with NullQuartet -> ()
) class_indices
let result =
Zmap.create (Array.length contracted_class)
in
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
result
end;
let result =
Zmap.create (Array.length contracted_class)
in
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
result
with NullQuartet -> empty
@ -864,5 +832,5 @@ let contracted_class ~zero_m shell_a shell_b shell_c shell_d : float Zmap.t =
match shell_p, shell_q with
| Some shell_p, Some shell_q ->
contracted_class_shell_pairs ~zero_m shell_p shell_q
| _ -> Zmap.create 0
| _ -> empty