diff --git a/Utils/DIIS.mli b/Utils/DIIS.mli index 1926d06..d3e09c9 100644 --- a/Utils/DIIS.mli +++ b/Utils/DIIS.mli @@ -1,25 +1,29 @@ (** Direct Inversion of the Iterative Subspace algorithm. -At each iteration, one has: +At iteration {% $m$ %}, one has: -- {% $\mathbf{p}$ %}, a vector of parameters -- {% $\mathbf{e}$ %}, an approximate error vector +- {% $\mathbf{p}_m$ %}, a vector of parameters +- {% $\mathbf{e}_m$ %}, an approximate error vector + +The DIIS approximate solution for iteration $m+1$ is given by -The DIIS approximate solution is given by {% \begin{align*} -\mathbf{p}^{\text{DIIS}} & = \sum_i c_i (\mathbf{p}^f + \mathbf{e}_i) \\ - & = \sum_i c_i \mathbf{p}^f + \sum_i c_i \mathbf{e}_i) \\ +\mathbf{p}_{m+1} & = \sum_{i=1}^m c_i (\mathbf{p}^f + \mathbf{e}_i) \\ + & = \sum_{i=1}^m c_i \mathbf{p}^f + \sum_i c_i \mathbf{e}_i \end{align*} %} -where {% $\mathbf{p}^f$ %} is the exact solution, so one wants to minimize -the norm of the error vector imposing the constraint that $\sum_i c_i = 1$ with -a Langrange multiplier {% $\lambda$ %}. + +where {% $\mathbf{p}^f$ %} is the exact solution. One wants to minimize the +norm of the error vector imposing the constraint that {% $\sum_{i=1}^m c_i = 1$ %} +with a Langrange multiplier {% $\lambda$ %}. {% \begin{align*} -\mathcal{L} & = ||\sum_i c_i \mathbf{e}_i)||^2 - \lambda \left(\sum_i c_i - 1\right) \\ +\mathcal{L} & = ||\sum_i c_i \mathbf{e}_i||^2 - \lambda \left(\sum_i c_i - 1\right) \\ & = \sum_{ij} c_i c_j B_{ij} - \lambda \left(\sum_i c_i - 1\right) \end{align*} -with {% $B_{ij} = \langle \mathbf{e}_i | \mathbf{e}_j \rangle$ %}. +%} +with +{% $B_{ij} = \langle \mathbf{e}_i | \mathbf{e}_j \rangle$ %}. Equating zero to the derivatives of {% $\mathcal{L}$ %} with respect to {% $c_i$ %} and {% $\lambda$ %} leads to