10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2025-01-10 13:08:10 +01:00

Working on CI

This commit is contained in:
Anthony Scemama 2019-04-02 11:54:04 +02:00
parent 5bd2edde7b
commit 3c3b2f14ab
2 changed files with 59 additions and 41 deletions

View File

@ -323,10 +323,7 @@ let create_matrix_spin f det_space =
in in
let result = let result =
if Parallel.master then Array.init ndet (fun _ -> Vector.sparse_of_assoc_list ndet [])
Array.init ndet (fun _ -> Vector.sparse_of_assoc_list ndet [])
else
Array.init ndet (fun _ -> Vector.sparse_of_assoc_list ndet [])
in in
List.mapi (fun i i_alfa -> i*n_beta, i_alfa) a List.mapi (fun i i_alfa -> i*n_beta, i_alfa) a
@ -334,7 +331,7 @@ let create_matrix_spin f det_space =
|> Farm.run ~ordered:false ~f:task |> Farm.run ~ordered:false ~f:task
|> Stream.iter (fun (k, r) -> |> Stream.iter (fun (k, r) ->
Array.iteri (fun j r_j -> result.(k+j) <- r_j) r; Array.iteri (fun j r_j -> result.(k+j) <- r_j) r;
Printf.eprintf "%8d / %8d\r%!" (k+1) ndet; Printf.eprintf "%8d / %8d\r%!" (k+Array.length r) ndet;
) ; ) ;
Matrix.sparse_of_vector_array result Matrix.sparse_of_vector_array result
) )
@ -343,8 +340,7 @@ let create_matrix_spin f det_space =
let make ?(n_states=1) ?(algo=`Direct) det_space =
let make ?(n_states=1) det_space =
let mo_basis = Ds.mo_basis det_space in let mo_basis = Ds.mo_basis det_space in
@ -372,7 +368,7 @@ let make ?(n_states=1) det_space =
if ki <> kj then if ki <> kj then
h_ij mo_basis ki kj h_ij mo_basis ki kj
else else
h_ij mo_basis ki kj -. e_shift h_ij mo_basis ki ki -. e_shift
) det_space ) det_space
in in
@ -386,22 +382,57 @@ let make ?(n_states=1) det_space =
in in
let eigensystem = lazy ( let eigensystem = lazy (
let m_H =
Lazy.force m_H let eigensystem_incore () =
let m_H =
Lazy.force m_H
in
let diagonal =
Vec.init (Matrix.dim1 m_H) (fun i -> Matrix.get m_H i i)
in
let matrix_prod psi =
Matrix.mm ~transa:`T m_H psi
in
let eigenvectors, eigenvalues =
let result = lazy (
Davidson.make ~threshold:1.e-6 ~n_states diagonal matrix_prod
) in
Parallel.broadcast result
in
let eigenvalues = Vec.map (fun x -> x +. e_shift) eigenvalues in
eigenvectors, eigenvalues
in in
let diagonal =
Vec.init (Matrix.dim1 m_H) (fun i -> Matrix.get m_H i i) let eigensystem_direct () =
eigensystem_incore ()
in in
let matrix_prod psi = (*
Matrix.mm ~transa:`T m_H psi let diagonal =
let stream = Ds.determinant_stream det_space in
Vec.init (Ds.size det_space) (fun _ ->
let ki = Stream.next stream in
h_ij mo_basis ki ki -. e_shift)
in
let matrix_prod psi =
(*TODO*)
in
let eigenvectors, eigenvalues =
let result =
Davidson.make ~threshold:1.e-6 ~n_states diagonal matrix_prod
in
Parallel.broadcast (lazy result)
in
let eigenvalues = Vec.map (fun x -> x +. e_shift) eigenvalues in
eigenvectors, eigenvalues
in in
let eigenvectors, eigenvalues = *)
Parallel.broadcast (lazy (
Davidson.make ~threshold:1.e-6 ~n_states diagonal matrix_prod match algo with
)) | `Direct -> eigensystem_direct ()
in | `InCore -> eigensystem_incore ()
let eigenvalues = Vec.map (fun x -> x +. e_shift) eigenvalues in
eigenvectors, eigenvalues
) )
in in
{ det_space ; e_shift ; m_H ; m_S2 ; eigensystem ; n_states } { det_space ; e_shift ; m_H ; m_S2 ; eigensystem ; n_states }

View File

@ -22,26 +22,13 @@ let make
in in
(* Create guess vectors u, with randomly initialized unknown vectors. *) (* Create guess vectors u, with randomly initialized unknown vectors. *)
let random_vectors = let init_vectors =
let random_vector k = let init_vector k =
Vec.init n (fun i -> Vector.sparse_of_assoc_list n [ (k,1.0) ]
if i<k then 0.
else if i=k then 1.e5
else
0.
(*
let r1 = Random.float 1.
and r2 = Random.float 1.
in
let a = sqrt (-2. *. log r1)
and b = Constants.two_pi *. r2 in
let c = a *. cos b in
if abs_float c > 1.e-1 then c else 0.
*)
)
|> Util.normalize
in in
List.init m (fun i -> random_vector (i+1)) Array.init m (fun i -> init_vector (i+1))
|> Matrix.sparse_of_vector_array
|> Matrix.to_mat
in in
let pick_new u = let pick_new u =
@ -54,7 +41,7 @@ let make
let u_new = let u_new =
match guess with match guess with
| Some vectors -> Mat.to_col_vecs_list vectors | Some vectors -> Mat.to_col_vecs_list vectors
| None -> random_vectors | None -> Mat.to_col_vecs_list init_vectors
in in
let rec iteration u u_new w iter = let rec iteration u u_new w iter =