mirror of
https://gitlab.com/scemama/QCaml.git
synced 2025-01-03 01:55:40 +01:00
Working on vectorization
This commit is contained in:
parent
8c8ea8363a
commit
15ef05a9b1
@ -23,11 +23,11 @@ let zero_m ~maxm ~expo_pq_inv ~norm_pq_sq =
|
||||
|
||||
(** Compute all the integrals of a contracted class *)
|
||||
let contracted_class shell_a shell_b shell_c shell_d : float Zmap.t =
|
||||
TwoElectronRR.contracted_class ~zero_m shell_a shell_b shell_c shell_d
|
||||
TwoElectronRRVectorized.contracted_class ~zero_m shell_a shell_b shell_c shell_d
|
||||
|
||||
(** Compute all the integrals of a contracted class *)
|
||||
let contracted_class_shell_pairs ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
|
||||
TwoElectronRR.contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
TwoElectronRRVectorized.contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
|
||||
|
||||
let cutoff2 = cutoff *. cutoff
|
||||
|
346
Basis/TwoElectronRRVectorized.ml
Normal file
346
Basis/TwoElectronRRVectorized.ml
Normal file
@ -0,0 +1,346 @@
|
||||
open Util
|
||||
|
||||
let cutoff2 = cutoff *. cutoff
|
||||
|
||||
exception NullQuartet
|
||||
|
||||
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
|
||||
let hvrr_two_e m (angMom_a, angMom_b, angMom_c, angMom_d)
|
||||
(totAngMom_a, totAngMom_b, totAngMom_c, totAngMom_d)
|
||||
(maxm, zero_m_array)
|
||||
(expo_b, expo_d)
|
||||
(expo_inv_p, expo_inv_q)
|
||||
(center_ab, center_cd, center_pq) coef_prod
|
||||
map
|
||||
=
|
||||
|
||||
let totAngMom_a = Angular_momentum.to_int totAngMom_a
|
||||
and totAngMom_b = Angular_momentum.to_int totAngMom_b
|
||||
and totAngMom_c = Angular_momentum.to_int totAngMom_c
|
||||
and totAngMom_d = Angular_momentum.to_int totAngMom_d
|
||||
in
|
||||
|
||||
(** Vertical recurrence relations *)
|
||||
let rec vrr0 m angMom_a = function
|
||||
| 0 -> Array.mapi (fun j c -> c *. zero_m_array.(j).(m)) coef_prod
|
||||
| 1 -> let i = if angMom_a.(0) = 1 then 0 else if angMom_a.(1) = 1 then 1 else 2
|
||||
in Array.mapi (fun j c ->
|
||||
c *. expo_inv_p *.( (Coordinate.coord center_pq.(j) i) *. zero_m_array.(j).(m+1)
|
||||
-. expo_b *. (Coordinate.coord center_ab i) *. zero_m_array.(j).(m) ) ) coef_prod
|
||||
|
||||
| totAngMom_a ->
|
||||
let key = Zkey.of_int_tuple (Zkey.Three
|
||||
(angMom_a.(0)+1, angMom_a.(1)+1, angMom_a.(2)+1) )
|
||||
in
|
||||
|
||||
let (found, result) =
|
||||
try (true, Zmap.find map.(m) key) with
|
||||
| Not_found -> (false,
|
||||
let am = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |]
|
||||
and amm = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |]
|
||||
and xyz =
|
||||
match angMom_a with
|
||||
| [|0;0;_|] -> 2
|
||||
| [|0;_;_|] -> 1
|
||||
| _ -> 0
|
||||
in
|
||||
am.(xyz) <- am.(xyz) - 1;
|
||||
amm.(xyz) <- amm.(xyz) - 2;
|
||||
if am.(xyz) < 0 then Array.map (fun _ -> 0.) coef_prod
|
||||
else
|
||||
let result =
|
||||
vrr0 (m+1) am (totAngMom_a-1)
|
||||
|> Array.mapi (fun j x -> x *. expo_inv_p *. (Coordinate.coord center_pq.(j) xyz))
|
||||
|> Array.map2 (+.)
|
||||
(vrr0 m am (totAngMom_a-1)
|
||||
|> Array.map (fun x -> -. x *. expo_b *. expo_inv_p *. (Coordinate.coord center_ab xyz))
|
||||
)
|
||||
in
|
||||
if amm.(xyz) < 0 then result else
|
||||
vrr0 (m+1) amm (totAngMom_a-2)
|
||||
|> Array.map (fun x -> x *. expo_inv_p)
|
||||
|> Array.map2 (+.) (
|
||||
vrr0 m amm (totAngMom_a-2)
|
||||
|> Array.map (fun x -> x *. (float_of_int am.(xyz)) *. expo_inv_p *. 0.5))
|
||||
|> Array.map2 (+.) result
|
||||
)
|
||||
|
||||
in
|
||||
|
||||
if not found then
|
||||
Zmap.add map.(m) key result;
|
||||
result
|
||||
|
||||
and vrr m angMom_a angMom_c totAngMom_a totAngMom_c =
|
||||
|
||||
match (totAngMom_a, totAngMom_c) with
|
||||
| (0,0) -> Array.mapi (fun j c -> c *. zero_m_array.(j).(m)) coef_prod
|
||||
| (_,0) -> vrr0 m angMom_a totAngMom_a
|
||||
| (_,_) ->
|
||||
|
||||
let key = Zkey.of_int_tuple (Zkey.Six
|
||||
((angMom_a.(0)+1, angMom_a.(1)+1, angMom_a.(2)+1),
|
||||
(angMom_c.(0)+1, angMom_c.(1)+1, angMom_c.(2)+1)) )
|
||||
|
||||
in
|
||||
|
||||
let (found, result) =
|
||||
try (true, Zmap.find map.(m) key) with
|
||||
| Not_found -> (false,
|
||||
let am = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |]
|
||||
and cm = [| angMom_c.(0) ; angMom_c.(1) ; angMom_c.(2) |]
|
||||
and cmm = [| angMom_c.(0) ; angMom_c.(1) ; angMom_c.(2) |]
|
||||
and xyz =
|
||||
match angMom_c with
|
||||
| [|0;0;_|] -> 2
|
||||
| [|0;_;_|] -> 1
|
||||
| _ -> 0
|
||||
in
|
||||
am.(xyz) <- am.(xyz) - 1;
|
||||
cm.(xyz) <- cm.(xyz) - 1;
|
||||
cmm.(xyz) <- cmm.(xyz) - 2;
|
||||
if cm.(xyz) < 0 then Array.map (fun _ -> 0.) coef_prod else
|
||||
let result =
|
||||
Array.map2 (-.)
|
||||
( Array.mapi (fun j x -> -. x *. expo_d.(j) *. expo_inv_q.(j) *. (Coordinate.coord center_cd.(j) xyz) ) (vrr m angMom_a cm totAngMom_a (totAngMom_c-1) ) )
|
||||
( Array.mapi (fun j x -> x *. expo_inv_q.(j) *. (Coordinate.coord center_pq.(j) xyz)) (vrr (m+1) angMom_a cm totAngMom_a (totAngMom_c-1) ) )
|
||||
in
|
||||
let result =
|
||||
if cmm.(xyz) < 0 then result else
|
||||
Array.map2 (+.) result
|
||||
( Array.mapi (fun j x -> x *. (float_of_int cm.(xyz)) *. expo_inv_q.(j) *. 0.5 )
|
||||
(vrr m angMom_a cmm totAngMom_a (totAngMom_c-2)) )
|
||||
|> Array.map2 (+.)
|
||||
( Array.mapi (fun j x -> x *. expo_inv_q.(j))
|
||||
(vrr (m+1) angMom_a cmm totAngMom_a (totAngMom_c-2) ) )
|
||||
in
|
||||
if am.(xyz) lor cm.(xyz) < 0 then result else
|
||||
Array.map2 (-.) result
|
||||
(Array.mapi (fun j x -> x *. (float_of_int angMom_a.(xyz)) *. expo_inv_p *. expo_inv_q.(j) *. 0.5 )
|
||||
(vrr (m+1) am cm (totAngMom_a-1) (totAngMom_c-1) ) )
|
||||
)
|
||||
in
|
||||
if not found then
|
||||
Zmap.add map.(m) key result;
|
||||
result
|
||||
|
||||
|
||||
|
||||
|
||||
(** Horizontal recurrence relations *)
|
||||
and hrr0 m angMom_a angMom_b angMom_c
|
||||
totAngMom_a totAngMom_b totAngMom_c =
|
||||
|
||||
match totAngMom_b with
|
||||
| 0 -> vrr m angMom_a angMom_c totAngMom_a totAngMom_c
|
||||
| 1 -> let xyz = if angMom_b.(0) = 1 then 0 else if angMom_b.(1) = 1 then 1 else 2 in
|
||||
let ap = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |] in
|
||||
ap.(xyz) <- ap.(xyz) + 1;
|
||||
Array.map2 (+.)
|
||||
(vrr m ap angMom_c (totAngMom_a+1) totAngMom_c)
|
||||
(Array.map (fun x -> x *. (Coordinate.coord center_ab xyz))
|
||||
(vrr m angMom_a angMom_c totAngMom_a totAngMom_c) )
|
||||
| _ ->
|
||||
let ap = [| angMom_a.(0) ; angMom_a.(1) ; angMom_a.(2) |]
|
||||
and bm = [| angMom_b.(0) ; angMom_b.(1) ; angMom_b.(2) |]
|
||||
and xyz =
|
||||
match angMom_b with
|
||||
| [|0;0;_|] -> 2
|
||||
| [|0;_;_|] -> 1
|
||||
| _ -> 0
|
||||
in
|
||||
ap.(xyz) <- ap.(xyz) + 1;
|
||||
bm.(xyz) <- bm.(xyz) - 1;
|
||||
if (bm.(xyz) < 0) then Array.map (fun _ -> 0.) coef_prod else
|
||||
Array.map2 (+.)
|
||||
(hrr0 m ap bm angMom_c (totAngMom_a+1) (totAngMom_b-1) totAngMom_c )
|
||||
(Array.map (fun x -> x *. (Coordinate.coord center_ab xyz))
|
||||
(hrr0 m angMom_a bm angMom_c totAngMom_a (totAngMom_b-1) totAngMom_c )
|
||||
)
|
||||
|
||||
and hrr m angMom_a angMom_b angMom_c angMom_d
|
||||
totAngMom_a totAngMom_b totAngMom_c totAngMom_d =
|
||||
|
||||
match (totAngMom_b, totAngMom_d) with
|
||||
| (0,0) ->
|
||||
vrr m angMom_a angMom_c totAngMom_a totAngMom_c
|
||||
| (_,0) -> hrr0 m angMom_a angMom_b angMom_c totAngMom_a totAngMom_b totAngMom_c
|
||||
| (_,_) ->
|
||||
let cp = [| angMom_c.(0) ; angMom_c.(1) ; angMom_c.(2) |]
|
||||
and dm = [| angMom_d.(0) ; angMom_d.(1) ; angMom_d.(2) |]
|
||||
and xyz =
|
||||
match angMom_d with
|
||||
| [|0;0;_|] -> 2
|
||||
| [|0;_;_|] -> 1
|
||||
| _ -> 0
|
||||
in
|
||||
cp.(xyz) <- cp.(xyz) + 1;
|
||||
dm.(xyz) <- dm.(xyz) - 1;
|
||||
Array.map2 (+.)
|
||||
(hrr m angMom_a angMom_b cp dm totAngMom_a totAngMom_b
|
||||
(totAngMom_c+1) (totAngMom_d-1) )
|
||||
(Array.mapi (fun j x -> x *. (Coordinate.coord center_cd.(j) xyz))
|
||||
(hrr m angMom_a angMom_b angMom_c dm totAngMom_a totAngMom_b
|
||||
totAngMom_c (totAngMom_d-1) ) )
|
||||
in
|
||||
hrr m angMom_a angMom_b angMom_c angMom_d totAngMom_a totAngMom_b
|
||||
totAngMom_c totAngMom_d
|
||||
|
||||
|
||||
|
||||
|
||||
let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q : float Zmap.t =
|
||||
|
||||
let shell_a = shell_p.(0).Shell_pair.shell_a
|
||||
and shell_b = shell_p.(0).Shell_pair.shell_b
|
||||
and shell_c = shell_q.(0).Shell_pair.shell_a
|
||||
and shell_d = shell_q.(0).Shell_pair.shell_b
|
||||
in
|
||||
let maxm =
|
||||
let open Angular_momentum in
|
||||
(to_int @@ Contracted_shell.totAngMom shell_a) + (to_int @@ Contracted_shell.totAngMom shell_b)
|
||||
+ (to_int @@ Contracted_shell.totAngMom shell_c) + (to_int @@ Contracted_shell.totAngMom shell_d)
|
||||
in
|
||||
|
||||
(* Pre-computation of integral class indices *)
|
||||
let class_indices =
|
||||
Angular_momentum.zkey_array
|
||||
(Angular_momentum.Quartet
|
||||
Contracted_shell.(totAngMom shell_a, totAngMom shell_b,
|
||||
totAngMom shell_c, totAngMom shell_d))
|
||||
in
|
||||
|
||||
let contracted_class =
|
||||
Array.make (Array.length class_indices) 0.;
|
||||
in
|
||||
|
||||
(* Compute all integrals in the shell for each pair of significant shell pairs *)
|
||||
|
||||
begin
|
||||
match Contracted_shell.(totAngMom shell_a, totAngMom shell_b,
|
||||
totAngMom shell_c, totAngMom shell_d) with
|
||||
| Angular_momentum.(S,S,S,S) ->
|
||||
contracted_class.(0) <-
|
||||
Array.fold_left (fun accu shell_ab -> accu +.
|
||||
Array.fold_left (fun accu shell_cd ->
|
||||
let coef_prod =
|
||||
shell_ab.Shell_pair.coef *. shell_cd.Shell_pair.coef
|
||||
in
|
||||
(** Screening on the product of coefficients *)
|
||||
try
|
||||
if (abs_float coef_prod) < 1.e-4*.cutoff then
|
||||
raise NullQuartet;
|
||||
|
||||
let expo_pq_inv =
|
||||
shell_ab.Shell_pair.expo_inv +. shell_cd.Shell_pair.expo_inv
|
||||
in
|
||||
let center_pq =
|
||||
Coordinate.(shell_ab.Shell_pair.center |- shell_cd.Shell_pair.center)
|
||||
in
|
||||
let norm_pq_sq =
|
||||
Coordinate.dot center_pq center_pq
|
||||
in
|
||||
|
||||
let zero_m_array =
|
||||
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
|
||||
in
|
||||
|
||||
let coef_prod =
|
||||
shell_ab.Shell_pair.coef *. shell_cd.Shell_pair.coef
|
||||
in
|
||||
let integral =
|
||||
zero_m_array.(0)
|
||||
in
|
||||
accu +. coef_prod *. integral
|
||||
with NullQuartet -> accu
|
||||
) 0. shell_q
|
||||
) 0. shell_p
|
||||
|
||||
| _ ->
|
||||
begin
|
||||
Array.iter (fun shell_ab ->
|
||||
let b = shell_ab.Shell_pair.j in
|
||||
let common =
|
||||
Array.map (fun shell_cd ->
|
||||
let coef_prod =
|
||||
shell_ab.Shell_pair.coef *. shell_cd.Shell_pair.coef
|
||||
in
|
||||
let coef_prod =
|
||||
if (abs_float coef_prod) < 1.e-4*.cutoff then
|
||||
0. else coef_prod
|
||||
in
|
||||
let expo_pq_inv =
|
||||
shell_ab.Shell_pair.expo_inv +. shell_cd.Shell_pair.expo_inv
|
||||
in
|
||||
let center_pq =
|
||||
Coordinate.(shell_ab.Shell_pair.center |- shell_cd.Shell_pair.center)
|
||||
in
|
||||
let norm_pq_sq =
|
||||
Coordinate.dot center_pq center_pq
|
||||
in
|
||||
|
||||
let zero_m_array =
|
||||
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
|
||||
in
|
||||
|
||||
let d = shell_cd.Shell_pair.j in
|
||||
|
||||
(zero_m_array, shell_cd.Shell_pair.expo_inv,
|
||||
Contracted_shell.expo shell_d d, shell_cd.Shell_pair.center_ab,
|
||||
center_pq,coef_prod)
|
||||
) shell_q
|
||||
in
|
||||
let (zero_m_array, expo_inv, d, center_cd, center_pq, coef_prod) =
|
||||
Array.map (fun (x,_,_,_,_,_) -> x) common,
|
||||
Array.map (fun (_,x,_,_,_,_) -> x) common,
|
||||
Array.map (fun (_,_,x,_,_,_) -> x) common,
|
||||
Array.map (fun (_,_,_,x,_,_) -> x) common,
|
||||
Array.map (fun (_,_,_,_,x,_) -> x) common,
|
||||
Array.map (fun (_,_,_,_,_,x) -> x) common
|
||||
in
|
||||
let map = Array.init maxm (fun _ -> Zmap.create (Array.length class_indices)) in
|
||||
(* Compute the integral class from the primitive shell quartet *)
|
||||
Array.iteri (fun i key ->
|
||||
let a = Zkey.to_int_array Zkey.Kind_12 key in
|
||||
let (angMomA,angMomB,angMomC,angMomD) =
|
||||
( [| a.(0) ; a.(1) ; a.(2) |],
|
||||
[| a.(3) ; a.(4) ; a.(5) |],
|
||||
[| a.(6) ; a.(7) ; a.(8) |],
|
||||
[| a.(9) ; a.(10) ; a.(11) |] )
|
||||
in
|
||||
let norm =
|
||||
shell_ab.Shell_pair.norm_fun angMomA angMomB *. shell_q.(0).Shell_pair.norm_fun angMomC angMomD
|
||||
in
|
||||
let integral = Array.fold_left (fun accu x -> accu +. norm *. x) 0. (
|
||||
hvrr_two_e 0 (angMomA, angMomB, angMomC, angMomD)
|
||||
(Contracted_shell.totAngMom shell_a, Contracted_shell.totAngMom shell_b,
|
||||
Contracted_shell.totAngMom shell_c, Contracted_shell.totAngMom shell_d)
|
||||
(maxm, zero_m_array)
|
||||
(Contracted_shell.expo shell_b b, d)
|
||||
(shell_ab.Shell_pair.expo_inv, expo_inv)
|
||||
(shell_ab.Shell_pair.center_ab, center_cd, center_pq)
|
||||
coef_prod map )
|
||||
in
|
||||
contracted_class.(i) <- contracted_class.(i) +. integral
|
||||
) class_indices
|
||||
) shell_p
|
||||
end
|
||||
end;
|
||||
|
||||
let result =
|
||||
Zmap.create (Array.length contracted_class)
|
||||
in
|
||||
Array.iteri (fun i key -> Zmap.add result key contracted_class.(i)) class_indices;
|
||||
result
|
||||
|
||||
|
||||
|
||||
(** Computes all the two-electron integrals of the contracted shell quartet *)
|
||||
let contracted_class ~zero_m shell_a shell_b shell_c shell_d : float Zmap.t =
|
||||
|
||||
let shell_p = Shell_pair.create_array shell_a shell_b
|
||||
and shell_q = Shell_pair.create_array shell_c shell_d
|
||||
in
|
||||
contracted_class_shell_pairs ~zero_m shell_p shell_q
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user