10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-12-22 12:23:31 +01:00

Single/Double excitation operators

This commit is contained in:
Anthony Scemama 2019-02-18 12:41:54 +01:00
parent add68968b6
commit 13921fef0a
6 changed files with 174 additions and 15 deletions

View File

@ -1,17 +1,27 @@
type t = type t =
{ {
alpha : Spindeterminant.t ; alfa : Spindeterminant.t ;
beta : Spindeterminant.t ; beta : Spindeterminant.t ;
} }
type hole = int
type particle = int
let alpha t = t.alpha
let alfa t = t.alfa
let beta t = t.beta let beta t = t.beta
let vac =
{
alfa = Spindeterminant.vac ;
beta = Spindeterminant.vac ;
}
let phase t = let phase t =
match Spindeterminant.(phase t.alpha, phase t.beta) with match Spindeterminant.(phase t.alfa, phase t.beta) with
| Phase.Pos, Phase.Pos | Phase.Pos, Phase.Pos
| Phase.Neg, Phase.Neg -> Phase.Pos | Phase.Neg, Phase.Neg -> Phase.Pos
| _ -> Phase.Neg | _ -> Phase.Neg
@ -19,32 +29,66 @@ let phase t =
let of_spindeterminants a b = let of_spindeterminants a b =
{ {
alpha = a ; alfa = a ;
beta = b beta = b
} }
let is_none t = Spindeterminant.(is_none t.alfa || is_none t.beta)
let of_lists a b = let of_lists a b =
{ let alfa = Spindeterminant.of_list a
alpha = Spindeterminant.of_list a ; and beta = Spindeterminant.of_list b
beta = Spindeterminant.of_list b in of_spindeterminants alfa beta
}
let creation spin p t =
match spin with
| Spin.Alfa -> { t with alfa = Spindeterminant.creation p t.alfa }
| Spin.Beta -> { t with beta = Spindeterminant.creation p t.beta }
let annihilation spin h t =
match spin with
| Spin.Alfa -> { t with alfa = Spindeterminant.annihilation h t.alfa }
| Spin.Beta -> { t with beta = Spindeterminant.annihilation h t.beta }
let single_excitation spin h p t =
match spin with
| Spin.Alfa -> { t with alfa = Spindeterminant.single_excitation h p t.alfa }
| Spin.Beta -> { t with beta = Spindeterminant.single_excitation h p t.beta }
let double_excitation spin h p spin' h' p' t =
match spin, spin' with
| Spin.(Alfa, Beta) -> { alfa = Spindeterminant.single_excitation h p t.alfa ;
beta = Spindeterminant.single_excitation h' p' t.beta }
| Spin.(Beta, Alfa) -> { beta = Spindeterminant.single_excitation h p t.beta ;
alfa = Spindeterminant.single_excitation h' p' t.alfa }
| Spin.(Alfa, Alfa) -> { t with alfa = Spindeterminant.double_excitation h p h' p' t.alfa }
| Spin.(Beta, Beta) -> { t with beta = Spindeterminant.double_excitation h p h' p' t.beta }
let pp_det ppf t = let pp_det ppf t =
Format.fprintf ppf "@[<v> a: %a @; b: %a @]@." Format.fprintf ppf "@[<v>@[phase:%a@]@;@[a:%a@];@[b:%a@]@]@."
Spindeterminant.pp_spindet t.alpha Phase.pp_phase (phase t)
Spindeterminant.pp_spindet t.alfa
Spindeterminant.pp_spindet t.beta Spindeterminant.pp_spindet t.beta
let test_case () = let test_case () =
let test_creation () = let test_creation () =
let l_a = [ 1 ; 2 ; 3 ; 5 ; 64 ] let l_a = [ 1 ; 2 ; 3 ; 5 ; 64 ]
and l_b = [ 2 ; 3 ; 5 ; 65 ] in and l_b = [ 2 ; 3 ; 5 ; 65 ] in
let det = of_lists l_a l_b in let det = of_lists l_a l_b in
let z_a = alpha det let z_a = alfa det
and z_b = beta det in and z_b = beta det in
Alcotest.(check (list int )) "alpha" (Spindeterminant.to_list z_a) l_a; Alcotest.(check (list int )) "alfa" (Spindeterminant.to_list z_a) l_a;
Alcotest.(check (list int )) "beta" (Spindeterminant.to_list z_b) l_b; Alcotest.(check (list int )) "beta" (Spindeterminant.to_list z_b) l_b;
Alcotest.(check bool) "phase" (phase det = Phase.Pos) true; Alcotest.(check bool) "phase" (phase det = Phase.Pos) true;
in in
@ -67,9 +111,78 @@ let test_case () =
let det = of_lists l_a l_b in let det = of_lists l_a l_b in
Alcotest.(check bool) "phase" (phase det = Phase.Pos) true; Alcotest.(check bool) "phase" (phase det = Phase.Pos) true;
in in
let test_operators () =
let det =
let open Spin in
creation Alfa 1 @@ creation Alfa 3 @@ creation Alfa 2 @@ creation Alfa 5 @@
creation Beta 1 @@ creation Beta 3 @@ creation Beta 4 @@ creation Beta 5 @@ vac
in
Alcotest.(check bool) "creation 1" true
(det = of_lists [ 1 ; 3 ; 2 ; 5 ] [1 ; 3 ; 4 ; 5 ] );
let det' =
single_excitation Spin.Alfa 3 6 det
in
Alcotest.(check bool) "single_exc 1" true
(det' = of_lists [ 1 ; 6 ; 2 ; 5 ] [1 ; 3 ; 4 ; 5 ] );
let det' =
single_excitation Spin.Beta 3 6 det
in
Alcotest.(check bool) "single_exc 2" true
(det' = of_lists [ 1 ; 3 ; 2 ; 5 ] [1 ; 6 ; 4 ; 5 ] );
let det' =
single_excitation Spin.Alfa 4 6 det
in
Alcotest.(check bool) "single_exc 3" true (is_none det');
let det' =
single_excitation Spin.Beta 1 5 det
in
Alcotest.(check bool) "single_exc 4" true (is_none det');
let det' =
double_excitation Spin.Alfa 3 6 Spin.Alfa 2 7 det
in
let det'' = of_lists [ 1 ; 6 ; 7 ; 5 ] [1 ; 3 ; 4 ; 5 ] in
Alcotest.(check bool) "double_exc 1" true (det' = det'');
let det' =
double_excitation Spin.Beta 3 6 Spin.Beta 5 7 det
in
Alcotest.(check bool) "double_exc 2" true
(det' = of_lists [ 1 ; 3 ; 2 ; 5 ] [1 ; 6 ; 4 ; 7 ] );
let det' =
double_excitation Spin.Alfa 3 6 Spin.Beta 5 7 det
in
Alcotest.(check bool) "double_exc 3" true
(det' = of_lists [ 1 ; 6 ; 2 ; 5 ] [1 ; 3 ; 4 ; 7 ] );
let det' =
double_excitation Spin.Beta 5 7 Spin.Alfa 3 6 det
in
Alcotest.(check bool) "double_exc 4" true
(det' = of_lists [ 1 ; 6 ; 2 ; 5 ] [1 ; 3 ; 4 ; 7 ] );
let det' =
double_excitation Spin.Alfa 4 6 Spin.Alfa 2 7 det
in
Alcotest.(check bool) "double_exc 5" true (is_none det');
let det' =
double_excitation Spin.Beta 1 5 Spin.Alfa 2 7 det
in
Alcotest.(check bool) "double_exc 6" true (is_none det');
in
[ [
"Creation", `Quick, test_creation; "Creation", `Quick, test_creation;
"Phase", `Quick, test_phase; "Phase", `Quick, test_phase;
"Operators",`Quick, test_operators;
] ]

View File

@ -7,10 +7,12 @@ The {% $\alpha$ %} and {% $\beta$ %} determinants are of type [Spindeterminant.t
type t type t
type hole = int
type particle = int
(** {1 Accessors} *) (** {1 Accessors} *)
val alpha : t -> Spindeterminant.t val alfa : t -> Spindeterminant.t
(** Get the {% $\alpha$ %} spin-determinant. *) (** Get the {% $\alpha$ %} spin-determinant. *)
val beta : t -> Spindeterminant.t val beta : t -> Spindeterminant.t
@ -21,6 +23,29 @@ val phase : t -> Phase.t
spin-determinants. spin-determinants.
*) *)
val is_none : t -> bool
(** Tests if a Determinant is [None]. *)
(** {1 Second quantization operators} *)
val vac : t
(** Vacuum state, [vac = Some ]{% $|\rangle$ %} *)
val creation : Spin.t -> particle -> t -> t
(** [creation spin p] is the creation operator {% $a^\dagger_p$ %}. *)
val annihilation : Spin.t -> hole -> t -> t
(** [annihilation spin h] is the annihilation operator {% $a_h$ %}. *)
val single_excitation : Spin.t -> hole -> particle -> t -> t
(** Single excitation operator {% $T_h^p = a^\dagger_p a_h$ %}. *)
val double_excitation : Spin.t -> hole -> particle -> Spin.t -> hole -> particle -> t -> t
(** Double excitation operator {% $T_{hh'}^{pp'} = a^\dagger_p a^\dagger_{p'} a_{h'} a_h$ %}. *)
(** {1 Creators} *) (** {1 Creators} *)
val of_spindeterminants : Spindeterminant.t -> Spindeterminant.t -> t val of_spindeterminants : Spindeterminant.t -> Spindeterminant.t -> t

View File

@ -10,7 +10,7 @@ type particle = int
let phase = function let phase = function
| Some s -> s.phase | Some s -> s.phase
| None -> invalid_arg "Spindeterminant is None" | None -> Phase.Pos
let is_none = function let is_none = function

View File

@ -38,6 +38,9 @@ val annihilation : hole -> t -> t
val single_excitation : hole -> particle -> t -> t val single_excitation : hole -> particle -> t -> t
(** Single excitation operator {% $T_h^p = a^\dagger_p a_h$ %}. *) (** Single excitation operator {% $T_h^p = a^\dagger_p a_h$ %}. *)
val double_excitation : hole -> particle -> hole -> particle -> t -> t
(** Double excitation operator {% $T_{hh'}^{pp'} = a^\dagger_p a^\dagger_{p'} a_{h'} a_h$ %}. *)
val of_list : int list -> t val of_list : int list -> t
(** Builds a spin-determinant from a list of orbital indices. If the creation of the (** Builds a spin-determinant from a list of orbital indices. If the creation of the

6
Utils/Spin.ml Normal file
View File

@ -0,0 +1,6 @@
(** Electron spin *)
type t = Alfa | Beta

12
Utils/Spin.mli Normal file
View File

@ -0,0 +1,12 @@
(** Electron spin.
Note :
[Alfa] if written with an 'f' instead of 'ph' because it has the same number of
letters as [Beta], so the alignment of the code is nicer.
*)
type t = Alfa | Beta