mirror of
https://gitlab.com/scemama/QCaml.git
synced 2024-12-22 04:13:33 +01:00
Working on contraction
This commit is contained in:
parent
365735d111
commit
032f1a0913
@ -8,14 +8,6 @@ let cutoff2 = cutoff *. cutoff
|
||||
exception NullQuartet
|
||||
exception Found
|
||||
|
||||
let at_least_one_valid arr =
|
||||
try
|
||||
Vec.iter (fun x -> if (abs_float x > cutoff) then raise Found) arr ; false
|
||||
with Found -> true
|
||||
|
||||
(*TODO : REMOVE *)
|
||||
let sum integral =
|
||||
Array.fold_left (+.) 0. integral
|
||||
|
||||
(** Horizontal and Vertical Recurrence Relations (HVRR) *)
|
||||
let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
|
||||
@ -34,6 +26,7 @@ let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
|
||||
Array.make nq 0.
|
||||
in
|
||||
|
||||
|
||||
let totAngMom_a = Angular_momentum.to_int totAngMom_a
|
||||
and totAngMom_b = Angular_momentum.to_int totAngMom_b
|
||||
and totAngMom_c = Angular_momentum.to_int totAngMom_c
|
||||
@ -41,7 +34,8 @@ let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
|
||||
in
|
||||
|
||||
(** Vertical recurrence relations *)
|
||||
let rec vrr0_v l m angMom_a = function
|
||||
let rec vrr0_v m angMom_a = function
|
||||
(*
|
||||
| 1 ->
|
||||
let xyz =
|
||||
match angMom_a with
|
||||
@ -49,16 +43,36 @@ let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
|
||||
| (_,1,_) -> 1
|
||||
| _ -> 2
|
||||
in
|
||||
let a = Mat.mul center_pq.(xyz) zero_m_array.(m+1) in
|
||||
let b = copy expo_b in
|
||||
scal (Coordinate.coord center_ab xyz) b;
|
||||
let c = Mat.map (fun x -> x) zero_m_array.(m) in
|
||||
Mat.scal_cols c b;
|
||||
let d = Mat.sub a c in
|
||||
Mat.scal_cols d expo_inv_p;
|
||||
Some (Mat.mul coef_prod d)
|
||||
*)
|
||||
| 1 ->
|
||||
let xyz =
|
||||
match angMom_a with
|
||||
| (1,_,_) -> 0
|
||||
| (_,1,_) -> 1
|
||||
| _ -> 2
|
||||
in
|
||||
Some (
|
||||
Array.init np (fun ab -> let l=ab+1 in
|
||||
Array.init nq (fun k ->
|
||||
let f = expo_b.{l} *. (Coordinate.coord center_ab xyz) in
|
||||
Array.init nq (fun k -> coef_prod.{k+1,l} *. expo_inv_p.{l} *.
|
||||
(center_pq.{xyz+1,k+1,l} *. zero_m_array.(m+1).{k+1,l}
|
||||
-. f *. zero_m_array.(m).{k+1,l} ) )
|
||||
| 0 -> Array.init nq (fun k -> zero_m_array.(m).{k+1,l} *. coef_prod.{k+1,l})
|
||||
coef_prod.{k+1,l} *. expo_inv_p.{l} *.
|
||||
(center_pq.(xyz).{k+1,l} *. zero_m_array.(m+1).{k+1,l}
|
||||
-. f *. zero_m_array.(m).{k+1,l} ) ))
|
||||
)
|
||||
| 0 -> Some (Mat.mul zero_m_array.(m) coef_prod |> Mat.transpose_copy |> Mat.to_array)
|
||||
| totAngMom_a ->
|
||||
let key = Zkey.of_int_tuple (Zkey.Three angMom_a)
|
||||
in
|
||||
|
||||
try Zmap.find map_1d.(m).(l-1) key with
|
||||
try Zmap.find map_1d.(m) key with
|
||||
| Not_found ->
|
||||
let result =
|
||||
let am, amm, amxyz, xyz =
|
||||
@ -67,46 +81,84 @@ let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
|
||||
| (x,y,0) -> (x,y-1,0),(x,y-2,0), y-1, 1
|
||||
| (x,y,z) -> (x,y,z-1),(x,y,z-2), z-1, 2
|
||||
in
|
||||
if amxyz < 0 then empty else
|
||||
if amxyz < 0 then
|
||||
None
|
||||
else
|
||||
let v1_top, p1_top =
|
||||
if abs_float (Coordinate.coord center_ab xyz) < cutoff then
|
||||
None,
|
||||
vrr0_v (m+1) am (totAngMom_a-1)
|
||||
else
|
||||
vrr0_v m am (totAngMom_a-1),
|
||||
vrr0_v (m+1) am (totAngMom_a-1)
|
||||
in
|
||||
let v1_top2, p1_top2 =
|
||||
if amxyz < 1 then (None,None) else
|
||||
vrr0_v m amm (totAngMom_a-2),
|
||||
vrr0_v (m+1) amm (totAngMom_a-2)
|
||||
in
|
||||
|
||||
Some (
|
||||
Array.init np (fun ab -> let l = ab+1 in
|
||||
let v1 =
|
||||
let f =
|
||||
-. expo_b.{l} *. expo_inv_p.{l} *. (Coordinate.coord center_ab xyz)
|
||||
in
|
||||
if (abs_float f < cutoff) then empty else
|
||||
Array.map (fun v1k -> f *. v1k) (vrr0_v l m am (totAngMom_a-1) )
|
||||
match v1_top with
|
||||
| Some v1_top ->
|
||||
v1_top.(l-1)
|
||||
|> Array.map (fun x -> f *. x)
|
||||
| None -> empty
|
||||
in
|
||||
let p1 =
|
||||
|
||||
Array.mapi (fun k v2k -> v1.(k) +. expo_inv_p.{l} *. center_pq.{xyz+1,k+1,l} *. v2k) (vrr0_v l (m+1) am (totAngMom_a-1))
|
||||
match p1_top with
|
||||
| Some p1_top ->
|
||||
p1_top.(l-1)
|
||||
| _ -> assert false
|
||||
in
|
||||
let p1 =
|
||||
Array.init nq (fun k ->
|
||||
v1.(k) +. expo_inv_p.{l} *. center_pq.(xyz).{k+1,l} *. p1.(k))
|
||||
in
|
||||
if amxyz < 1 then p1 else
|
||||
let f = (float_of_int amxyz) *. expo_inv_p.{l} *. 0.5
|
||||
in
|
||||
if (abs_float f < cutoff) then empty else
|
||||
let v1 = vrr0_v l m amm (totAngMom_a-2)
|
||||
let v1 =
|
||||
match v1_top2 with
|
||||
| Some v1_top2 -> v1_top2.(l-1)
|
||||
| None -> assert false
|
||||
in
|
||||
let v2 =
|
||||
if (abs_float (f *. expo_inv_p.{l})) < cutoff then empty else
|
||||
vrr0_v l (m+1) amm (totAngMom_a-2)
|
||||
match p1_top2 with
|
||||
| Some p1_top2 -> p1_top2.(l-1)
|
||||
| None -> assert false
|
||||
in
|
||||
Array.init nq (fun k -> p1.(k) +.
|
||||
f *. (v1.(k) +. v2.(k) *. expo_inv_p.{l} ) )
|
||||
in Zmap.add map_1d.(m).(l-1) key result;
|
||||
Array.init nq (fun k ->
|
||||
p1.(k) +. f *. (v1.(k) +. v2.(k) *. expo_inv_p.{l} ) )
|
||||
)
|
||||
)
|
||||
in Zmap.add map_1d.(m) key result;
|
||||
result
|
||||
|
||||
and vrr_v l m angMom_a angMom_c totAngMom_a totAngMom_c =
|
||||
|
||||
and vrr_v m angMom_a angMom_c totAngMom_a totAngMom_c =
|
||||
|
||||
match (totAngMom_a, totAngMom_c) with
|
||||
| (i,0) -> if (i>0) then
|
||||
vrr0_v l m angMom_a totAngMom_a
|
||||
| (i,0) ->
|
||||
if (i>0) then
|
||||
begin
|
||||
match vrr0_v m angMom_a totAngMom_a with
|
||||
| Some x -> Some (Mat.of_array x |> Mat.transpose_copy)
|
||||
| None -> None
|
||||
end
|
||||
else
|
||||
Array.init nq (fun k -> zero_m_array.(m).{k+1,l} *. coef_prod.{k+1,l})
|
||||
Some (Mat.mul zero_m_array.(m) coef_prod )
|
||||
| (_,_) ->
|
||||
|
||||
let key = Zkey.of_int_tuple (Zkey.Six (angMom_a, angMom_c))
|
||||
in
|
||||
|
||||
try Zmap.find map_2d.(m).(l-1) key with
|
||||
try Zmap.find map_2d.(m) key with
|
||||
| Not_found ->
|
||||
let result =
|
||||
begin
|
||||
@ -129,32 +181,39 @@ let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
|
||||
(acx-2,acy,acz),
|
||||
aax,acx, 0
|
||||
in
|
||||
(*
|
||||
if cxyz < 1 then empty else
|
||||
*)
|
||||
let f1 =
|
||||
let f = (Coordinate.coord center_cd xyz) in
|
||||
Array.init nq (fun k ->
|
||||
expo_d.{k+1} *. expo_inv_q.{k+1} *. f)
|
||||
|> Vec.of_array
|
||||
in
|
||||
let f2 =
|
||||
Array.init nq (fun k ->
|
||||
expo_inv_q.{k+1} *. center_pq.{xyz+1,k+1,l} )
|
||||
|> Vec.of_array
|
||||
Vec.init nq (fun k ->
|
||||
expo_d.{k} *. expo_inv_q.{k} *. f)
|
||||
in
|
||||
let v1 =
|
||||
if (at_least_one_valid f1) then
|
||||
vrr_v l m angMom_a cm totAngMom_a (totAngMom_c-1)
|
||||
else empty
|
||||
and v2 =
|
||||
if (at_least_one_valid f2) then
|
||||
vrr_v l (m+1) angMom_a cm totAngMom_a (totAngMom_c-1)
|
||||
else empty
|
||||
if (abs_float @@ amax f1 > cutoff) then
|
||||
vrr_v m angMom_a cm totAngMom_a (totAngMom_c-1)
|
||||
else None
|
||||
in
|
||||
let f2 =
|
||||
Mat.init_cols nq np (fun k l ->
|
||||
expo_inv_q.{k} *. center_pq.(xyz).{k,l} )
|
||||
in
|
||||
let v2 =
|
||||
if (Mat.as_vec f2 |> amax |> abs_float) < cutoff then
|
||||
None
|
||||
else
|
||||
vrr_v (m+1) angMom_a cm totAngMom_a (totAngMom_c-1)
|
||||
in
|
||||
|
||||
let p1 =
|
||||
Array.init nq (fun k -> -. v1.(k) *. f1.{k+1} -. v2.(k) *. f2.{k+1})
|
||||
match v1, v2 with
|
||||
| Some v1, Some v2 ->
|
||||
Some (Mat.init_cols nq np (fun k l ->
|
||||
-. v1.{k,l} *. f1.{k} -. v2.{k,l} *. f2.{k,l}) )
|
||||
| None, Some v2 ->
|
||||
Some (Mat.init_cols nq np (fun k l -> -. v2.{k,l} *. f2.{k,l}) )
|
||||
| Some v1, None ->
|
||||
Some (Mat.init_cols nq np (fun k l -> -. v1.{k,l} *. f1.{k} ) )
|
||||
| None, None -> None
|
||||
in
|
||||
|
||||
let p2 =
|
||||
if cxyz < 2 then p1 else
|
||||
let fcm =
|
||||
@ -167,50 +226,88 @@ let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
|
||||
Vec.mul f1 expo_inv_q
|
||||
in
|
||||
let v1 =
|
||||
if (at_least_one_valid f1) then
|
||||
vrr_v l m angMom_a cmm totAngMom_a (totAngMom_c-2)
|
||||
else empty
|
||||
if (abs_float @@ amax f1 > cutoff) then
|
||||
vrr_v m angMom_a cmm totAngMom_a (totAngMom_c-2)
|
||||
else None
|
||||
in
|
||||
let v2 =
|
||||
if (at_least_one_valid f2) then
|
||||
vrr_v l (m+1) angMom_a cmm totAngMom_a (totAngMom_c-2)
|
||||
else empty
|
||||
if (abs_float @@ amax f2 > cutoff) then
|
||||
vrr_v (m+1) angMom_a cmm totAngMom_a (totAngMom_c-2)
|
||||
else None
|
||||
in
|
||||
Array.init nq (fun k -> p1.(k) +. f1.{k+1} *. v1.(k) +. f2.{k+1} *. v2.(k))
|
||||
match p1, v1, v2 with
|
||||
| Some p1, Some v1, Some v2 ->
|
||||
Some (Mat.init_cols nq np (fun k l -> p1.{k,l} +. f1.{k} *. v1.{k,l} +. f2.{k} *. v2.{k,l}) )
|
||||
| Some p1, Some v1, None ->
|
||||
Some (Mat.init_cols nq np (fun k l -> p1.{k,l} +. f1.{k} *. v1.{k,l} ))
|
||||
| Some p1, None, Some v2 ->
|
||||
Some (Mat.init_cols nq np (fun k l -> p1.{k,l} +. f2.{k} *. v2.{k,l}) )
|
||||
| None , Some v1, Some v2 ->
|
||||
Some (Mat.init_cols nq np (fun k l -> f1.{k} *. v1.{k,l} +. f2.{k} *. v2.{k,l}) )
|
||||
| Some p1, None, None -> Some p1
|
||||
| None , Some v1, None ->
|
||||
Some (Mat.init_cols nq np (fun k l -> f1.{k} *. v1.{k,l}))
|
||||
| None, None, Some v2 ->
|
||||
Some (Mat.init_cols nq np (fun k l -> f2.{k} *. v2.{k,l}) )
|
||||
| None, None, None -> None
|
||||
in
|
||||
if (axyz < 1) || (cxyz < 1) then p2 else
|
||||
let v =
|
||||
vrr_v (m+1) am cm (totAngMom_a-1) (totAngMom_c-1)
|
||||
in
|
||||
begin
|
||||
match (p2, v) with
|
||||
| Some p2, Some v -> Some (
|
||||
Array.init np (fun ab -> let l = ab+1 in
|
||||
let fa =
|
||||
(float_of_int axyz) *. expo_inv_p.{l} *. 0.5
|
||||
in
|
||||
let f1 =
|
||||
Vec.map (fun e -> fa *. e ) expo_inv_q
|
||||
in
|
||||
if (at_least_one_valid f1) then
|
||||
let v =
|
||||
vrr_v l (m+1) am cm (totAngMom_a-1) (totAngMom_c-1)
|
||||
Vec.init nq (fun k -> p2.{k,l} -. f1.{k} *. v.{k,l})
|
||||
)
|
||||
|> Mat.of_col_vecs )
|
||||
| Some p2, None -> Some p2
|
||||
| None, Some v -> Some (
|
||||
Array.init np (fun ab -> let l = ab+1 in
|
||||
let fa =
|
||||
(float_of_int axyz) *. expo_inv_p.{l} *. 0.5
|
||||
in
|
||||
Array.init nq (fun k -> p2.(k) -. f1.{k+1} *. v.(k))
|
||||
else p2
|
||||
let f1 =
|
||||
Vec.map (fun e -> fa *. e ) expo_inv_q
|
||||
in
|
||||
Vec.init nq (fun k -> -. f1.{k} *. v.{k,l})
|
||||
)
|
||||
|> Mat.of_col_vecs )
|
||||
| None, None -> None
|
||||
end
|
||||
in Zmap.add map_2d.(m).(l-1) key result;
|
||||
end
|
||||
in Zmap.add map_2d.(m) key result;
|
||||
result
|
||||
|
||||
|
||||
|
||||
|
||||
(** Horizontal recurrence relations *)
|
||||
and hrr0_v l angMom_a angMom_b angMom_c
|
||||
and hrr0_v angMom_a angMom_b angMom_c
|
||||
totAngMom_a totAngMom_b totAngMom_c =
|
||||
|
||||
match totAngMom_b with
|
||||
| 0 ->
|
||||
begin
|
||||
match (totAngMom_a, totAngMom_c) with
|
||||
| (0,0) ->
|
||||
Array.init nq (fun k -> zero_m_array.(0).{k+1,l} *. coef_prod.{k+1,l})
|
||||
|> sum
|
||||
| (_,0) -> vrr0_v l 0 angMom_a totAngMom_a |> sum
|
||||
| (_,_) -> vrr_v l 0 angMom_a angMom_c totAngMom_a totAngMom_c |> sum
|
||||
| (0,0) -> Mat.gemm_trace zero_m_array.(0) coef_prod
|
||||
| (_,0) ->
|
||||
begin
|
||||
match vrr0_v 0 angMom_a totAngMom_a with
|
||||
| Some matrix -> Mat.sum (Mat.of_array matrix)
|
||||
| None -> 0.
|
||||
end
|
||||
| (_,_) ->
|
||||
match vrr_v 0 angMom_a angMom_c totAngMom_a totAngMom_c with
|
||||
| Some matrix -> Mat.sum matrix
|
||||
| None -> 0.
|
||||
end
|
||||
| 1 ->
|
||||
let (aax, aay, aaz) = angMom_a in
|
||||
@ -222,13 +319,17 @@ let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
|
||||
in
|
||||
let f = Coordinate.coord center_ab xyz in
|
||||
let v1 =
|
||||
vrr_v l 0 ap angMom_c (totAngMom_a+1) totAngMom_c
|
||||
match vrr_v 0 ap angMom_c (totAngMom_a+1) totAngMom_c with
|
||||
| Some matrix -> Mat.sum matrix
|
||||
| None -> 0.
|
||||
in
|
||||
if (abs_float f < cutoff) then sum v1 else
|
||||
if (abs_float f < cutoff) then v1 else
|
||||
let v2 =
|
||||
vrr_v l 0 angMom_a angMom_c totAngMom_a totAngMom_c
|
||||
match vrr_v 0 angMom_a angMom_c totAngMom_a totAngMom_c with
|
||||
| Some matrix -> Mat.sum matrix
|
||||
| None -> 0.
|
||||
in
|
||||
Array.map2 (fun v1 v2 -> v1 +. v2 *. f) v1 v2 |> sum
|
||||
v1 +. v2 *. f
|
||||
| _ ->
|
||||
let (aax, aay, aaz) = angMom_a
|
||||
and (abx, aby, abz) = angMom_b in
|
||||
@ -247,24 +348,27 @@ let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
|
||||
in
|
||||
|
||||
let h1 =
|
||||
hrr0_v l ap bm angMom_c (totAngMom_a+1) (totAngMom_b-1) totAngMom_c
|
||||
hrr0_v ap bm angMom_c (totAngMom_a+1) (totAngMom_b-1) totAngMom_c
|
||||
in
|
||||
let f = (Coordinate.coord center_ab xyz) in
|
||||
if (abs_float f < cutoff) then h1 else
|
||||
let h2 =
|
||||
hrr0_v l angMom_a bm angMom_c totAngMom_a (totAngMom_b-1) totAngMom_c
|
||||
hrr0_v angMom_a bm angMom_c totAngMom_a (totAngMom_b-1) totAngMom_c
|
||||
in
|
||||
h1 +. h2 *. f
|
||||
|
||||
and hrr_v l angMom_a angMom_b angMom_c angMom_d
|
||||
and hrr_v angMom_a angMom_b angMom_c angMom_d
|
||||
totAngMom_a totAngMom_b totAngMom_c totAngMom_d =
|
||||
|
||||
match (totAngMom_b, totAngMom_d) with
|
||||
| (_,0) -> if (totAngMom_b = 0) then
|
||||
vrr_v l 0 angMom_a angMom_c totAngMom_a totAngMom_c
|
||||
|> sum
|
||||
begin
|
||||
match vrr_v 0 angMom_a angMom_c totAngMom_a totAngMom_c with
|
||||
| Some matrix -> Mat.sum matrix
|
||||
| None -> 0.
|
||||
end
|
||||
else
|
||||
hrr0_v l angMom_a angMom_b angMom_c totAngMom_a totAngMom_b totAngMom_c
|
||||
hrr0_v angMom_a angMom_b angMom_c totAngMom_a totAngMom_b totAngMom_c
|
||||
| (_,_) ->
|
||||
let (acx, acy, acz) = angMom_c
|
||||
and (adx, ady, adz) = angMom_d in
|
||||
@ -275,21 +379,19 @@ let hvrr_two_e_vector (angMom_a, angMom_b, angMom_c, angMom_d)
|
||||
| _ -> (acx, acy, acz+1), (adx, ady, adz-1), 2
|
||||
in
|
||||
let h1 =
|
||||
hrr_v l angMom_a angMom_b cp dm totAngMom_a totAngMom_b (totAngMom_c+1) (totAngMom_d-1)
|
||||
hrr_v angMom_a angMom_b cp dm totAngMom_a totAngMom_b (totAngMom_c+1) (totAngMom_d-1)
|
||||
and h2 =
|
||||
hrr_v l angMom_a angMom_b angMom_c dm totAngMom_a totAngMom_b totAngMom_c (totAngMom_d-1)
|
||||
hrr_v angMom_a angMom_b angMom_c dm totAngMom_a totAngMom_b totAngMom_c (totAngMom_d-1)
|
||||
in
|
||||
let f = (Coordinate.coord center_cd xyz) in
|
||||
h1 +. f *. h2
|
||||
in
|
||||
Array.init np (fun ab ->
|
||||
hrr_v (ab+1)
|
||||
hrr_v
|
||||
(angMom_a.(0),angMom_a.(1),angMom_a.(2))
|
||||
(angMom_b.(0),angMom_b.(1),angMom_b.(2))
|
||||
(angMom_c.(0),angMom_c.(1),angMom_c.(2))
|
||||
(angMom_d.(0),angMom_d.(1),angMom_d.(2))
|
||||
totAngMom_a totAngMom_b totAngMom_c totAngMom_d
|
||||
) |> sum
|
||||
|
||||
|
||||
|
||||
@ -350,7 +452,7 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
totAngMom shell_c, totAngMom shell_d) with
|
||||
| Angular_momentum.(S,S,S,S) ->
|
||||
contracted_class.(0) <-
|
||||
let zm_array = Mat.init_rows np nq (fun i j ->
|
||||
let zm_array = Mat.init_cols np nq (fun i j ->
|
||||
(** Screening on the product of coefficients *)
|
||||
try
|
||||
if (abs_float coef.{j,i} ) < 1.e-3*.cutoff then
|
||||
@ -385,20 +487,21 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
|
||||
|
||||
let center_pq =
|
||||
let result =
|
||||
Array3.create Float64 fortran_layout 3 nq np
|
||||
Array.init 3 (fun xyz ->
|
||||
Mat.init_cols nq np (fun cd ab ->
|
||||
let shell_ab = sp.(ab-1)
|
||||
and shell_cd = sq.(cd-1)
|
||||
in
|
||||
Array.iteri (fun ab shell_ab ->
|
||||
Array.iteri (fun cd shell_cd ->
|
||||
let cpq =
|
||||
Coordinate.(shell_ab.ShellPair.center |- shell_cd.ShellPair.center)
|
||||
in
|
||||
result.{1,cd+1,ab+1} <- Coordinate.x cpq;
|
||||
result.{2,cd+1,ab+1} <- Coordinate.y cpq;
|
||||
result.{3,cd+1,ab+1} <- Coordinate.z cpq;
|
||||
) sq
|
||||
) sp;
|
||||
result
|
||||
match xyz with
|
||||
| 0 -> Coordinate.x cpq;
|
||||
| 1 -> Coordinate.y cpq;
|
||||
| 2 -> Coordinate.z cpq;
|
||||
| _ -> assert false
|
||||
)
|
||||
)
|
||||
in
|
||||
let zero_m_array =
|
||||
let result =
|
||||
@ -411,9 +514,9 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
expo_inv_p.{ab+1} +. expo_inv_q.{cd+1}
|
||||
in
|
||||
let norm_pq_sq =
|
||||
center_pq.{1,cd+1,ab+1} *. center_pq.{1,cd+1,ab+1} +.
|
||||
center_pq.{2,cd+1,ab+1} *. center_pq.{2,cd+1,ab+1} +.
|
||||
center_pq.{3,cd+1,ab+1} *. center_pq.{3,cd+1,ab+1}
|
||||
center_pq.(0).{cd+1,ab+1} *. center_pq.(0).{cd+1,ab+1} +.
|
||||
center_pq.(1).{cd+1,ab+1} *. center_pq.(1).{cd+1,ab+1} +.
|
||||
center_pq.(2).{cd+1,ab+1} *. center_pq.(2).{cd+1,ab+1}
|
||||
in
|
||||
|
||||
zero_m ~maxm ~expo_pq_inv ~norm_pq_sq
|
||||
@ -444,8 +547,8 @@ let contracted_class_shell_pairs ~zero_m ?schwartz_p ?schwartz_q shell_p shell_q
|
||||
|> Array.concat
|
||||
in
|
||||
|
||||
let map_1d = Array.init maxm (fun _ -> Array.init np (fun _ -> Zmap.create (4*maxm)))
|
||||
and map_2d = Array.init maxm (fun _ -> Array.init np (fun _ -> Zmap.create (Array.length class_indices)))
|
||||
let map_1d = Array.init maxm (fun _ -> Zmap.create (4*maxm))
|
||||
and map_2d = Array.init maxm (fun _ -> Zmap.create (Array.length class_indices))
|
||||
in
|
||||
(* Compute the integral class from the primitive shell quartet *)
|
||||
Array.iteri (fun i key ->
|
||||
|
Loading…
Reference in New Issue
Block a user