10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2024-11-19 04:22:21 +01:00
QCaml/Basis/Multipole.ml

200 lines
6.2 KiB
OCaml
Raw Normal View History

2020-04-16 19:49:23 +02:00
open Util
open Constants
open Lacaml.D
type t = Mat.t array
(*
[| "x"; "y"; "z"; "x2"; "y2"; "z2" |]
*)
module Am = AngularMomentum
module Bs = Basis
module Co = Coordinate
module Cs = ContractedShell
module Csp = ContractedShellPair
module Po = Powers
module Psp = PrimitiveShellPair
let multiply a b =
let n = Mat.dim1 a in
let c = Mat.create n n in
Mat.cpab c a b;
c
let x0 t = t.(0)
let y0 t = t.(1)
let z0 t = t.(2)
let x1 t = t.(3)
let y1 t = t.(4)
let z1 t = t.(5)
let x2 t = t.(6)
let y2 t = t.(7)
let z2 t = t.(8)
let matrix_x t = multiply (x1 t) @@ multiply (y0 t) (z0 t)
let matrix_y t = multiply (x0 t) @@ multiply (y1 t) (z0 t)
let matrix_z t = multiply (x0 t) @@ multiply (y0 t) (z1 t)
let matrix_x2 t = multiply (x2 t) @@ multiply (y0 t) (z0 t)
let matrix_y2 t = multiply (x0 t) @@ multiply (y2 t) (z0 t)
let matrix_z2 t = multiply (x0 t) @@ multiply (y0 t) (z2 t)
let matrix_xy t = multiply (x1 t) @@ multiply (y1 t) (z0 t)
let matrix_yz t = multiply (x0 t) @@ multiply (y1 t) (z1 t)
let matrix_zx t = multiply (x1 t) @@ multiply (y0 t) (z1 t)
let cutoff = integrals_cutoff
let to_powers x =
let open Zkey in
match to_powers x with
| Six x -> x
| _ -> assert false
(** Computes all the integrals of the contracted shell pair *)
let contracted_class shell_a shell_b : float Zmap.t array =
match Csp.make shell_a shell_b with
| None -> Array.init 9 (fun _ -> Zmap.create 0)
| Some shell_p ->
begin
(* Pre-computation of integral class indices *)
let class_indices = Csp.zkey_array shell_p in
let contracted_class =
Array.init 9 (fun _ -> Array.make (Array.length class_indices) 0.)
in
let a_minus_b =
Csp.a_minus_b shell_p
in
let norm_coef_scales =
Csp.norm_scales shell_p
in
(* Compute all integrals in the shell for each pair of significant shell pairs *)
let xyz_of_int k =
match k with
| 0 -> Co.X
| 1 -> Co.Y
| _ -> Co.Z
in
List.iter (fun (coef_prod, psp) ->
(** Screening on the product of coefficients *)
if (abs_float coef_prod) > 1.e-6*.cutoff then
begin
let expo_inv = Psp.exponent_inv psp
and center_pa = Psp.center_minus_a psp
and xa = Co.get Co.X @@ Cs.center shell_a
and ya = Co.get Co.Y @@ Cs.center shell_a
and za = Co.get Co.Z @@ Cs.center shell_a
in
Array.iteri (fun i key ->
let (angMomA, angMomB) = to_powers key in
(* 1D Overlap <i|j> *)
let f k =
let xyz = xyz_of_int k in
Overlap_primitives.hvrr (Po.get xyz angMomA, Po.get xyz angMomB)
expo_inv
(Co.get xyz a_minus_b, Co.get xyz center_pa)
in
(* 1D <i|x-Xa|j> *)
let g k =
let xyz = xyz_of_int k in
Overlap_primitives.hvrr (Po.get xyz angMomA + 1, Po.get xyz angMomB)
expo_inv
(Co.get xyz a_minus_b, Co.get xyz center_pa)
in
(* 1D <i|(x-Xa)^2|j> *)
let h k =
let xyz = xyz_of_int k in
Overlap_primitives.hvrr (Po.get xyz angMomA + 2, Po.get xyz angMomB)
expo_inv
(Co.get xyz a_minus_b, Co.get xyz center_pa)
in
let norm = norm_coef_scales.(i) in
let f0, f1, f2, g0, g1, g2, h0, h1, h2 =
f 0, f 1, f 2, g 0, g 1, g 2, h 0, h 1, h 2
in
let x = g0 +. f0 *. xa in
let y = g1 +. f1 *. ya in
let z = g2 +. f2 *. za in
let x2 = h0 +. xa *. (2. *. x -. xa *. f0) in
let y2 = h1 +. ya *. (2. *. y -. ya *. f1) in
let z2 = h2 +. za *. (2. *. z -. za *. f2) in
let c = contracted_class in
let d = coef_prod *. norm in
c.(0).(i) <- c.(0).(i) +. d *. f0 ;
c.(1).(i) <- c.(1).(i) +. d *. f1 ;
c.(2).(i) <- c.(2).(i) +. d *. f2 ;
c.(3).(i) <- c.(3).(i) +. d *. x ;
c.(4).(i) <- c.(4).(i) +. d *. y ;
c.(5).(i) <- c.(5).(i) +. d *. z ;
c.(6).(i) <- c.(6).(i) +. d *. x2 ;
c.(7).(i) <- c.(7).(i) +. d *. y2 ;
c.(8).(i) <- c.(8).(i) +. d *. z2 ;
) class_indices
end
) (Csp.coefs_and_shell_pairs shell_p);
let result =
Array.map (fun c -> Zmap.create (Array.length c) ) contracted_class
in
for j=0 to Array.length result do
let rj = result.(j) in
let cj = contracted_class.(j) in
Array.iteri (fun i key -> Zmap.add rj key cj.(i)) class_indices
done;
result
end
(** Create multipole matrices *)
let of_basis basis =
let to_powers x =
let open Zkey in
match to_powers x with
| Three x -> x
| _ -> assert false
in
let n = Bs.size basis
and shell = Bs.contracted_shells basis
in
let result = Array.init 9 (fun _ -> Mat.create n n) in
for j=0 to (Array.length shell) - 1 do
for i=0 to j do
(* Compute all the integrals of the class *)
let cls =
contracted_class shell.(i) shell.(j)
in
for k=0 to 8 do
Array.iteri (fun j_c powers_j ->
let j_c = Cs.index shell.(j) + j_c + 1 in
let xj = to_powers powers_j in
Array.iteri (fun i_c powers_i ->
let i_c = Cs.index shell.(i) + i_c + 1 in
let xi = to_powers powers_i in
let key =
Zkey.of_powers_six xi xj
in
let value =
try Zmap.find cls.(k) key
with Not_found -> 0.
in
result.(k).{i_c,j_c} <- value;
result.(k).{j_c,i_c} <- value;
) (Am.zkey_array (Singlet (Cs.ang_mom shell.(i))))
) (Am.zkey_array (Singlet (Cs.ang_mom shell.(j))))
done;
done;
done;
for k=0 to 8 do
Mat.detri result.(k);
done;
result