10
1
mirror of https://gitlab.com/scemama/QCaml.git synced 2025-01-05 10:58:47 +01:00
QCaml/mo/lib/localization.ml

376 lines
11 KiB
OCaml
Raw Normal View History

2021-01-30 19:07:59 +01:00
(* [[file:~/QCaml/mo/localization.org::*Type][Type:3]] *)
open Linear_algebra
type localization_kind =
| Edmiston
| Boys
type mo = Mo_dim.t
type ao = Ao.Ao_dim.t
type loc
type localization_data =
{
coefficients : (ao, loc) Matrix.t ;
kappa : (loc, loc) Matrix.t ;
scaling : float ;
loc_value : float ;
2021-02-03 09:23:20 +01:00
convergence : float ;
2021-01-30 19:07:59 +01:00
iteration : int ;
}
type t =
{
kind : localization_kind ;
mo_basis : Basis.t ;
data : localization_data option lazy_t array ;
selected_mos : int list ;
}
open Common
(* Type:3 ends here *)
(* Edmiston-Rudenberg *)
(* [[file:~/QCaml/mo/localization.org::*Edmiston-Rudenberg][Edmiston-Rudenberg:1]] *)
let kappa_edmiston in_basis m_C =
let ao_basis =
Basis.simulation in_basis
|> Simulation.ao_basis
in
let ee_ints = Ao.Basis.ee_ints ao_basis in
let n_ao = Ao.Basis.size ao_basis in
let n_mo = Matrix.dim2 m_C in
(* Temp arrays for integral transformation *)
let m_pqr =
Bigarray.(Array3.create Float64 fortran_layout n_ao n_ao n_ao)
in
let m_qr_i = Matrix.create (n_ao*n_ao) n_mo in
let m_ri_j = Matrix.create (n_ao*n_mo) n_mo in
let m_ij_k = Matrix.create (n_mo*n_mo) n_mo in
let m_a12 = Bigarray.(Array2.create Float64 fortran_layout n_mo n_mo) in
let m_b12 = Bigarray.(Array2.create Float64 fortran_layout n_mo n_mo) in
Bigarray.Array2.fill m_b12 0.;
Bigarray.Array2.fill m_a12 0.;
let v_d =
Vector.init n_mo (fun _ -> 0.)
|> Vector.to_bigarray_inplace
in
Array.iter (fun s ->
Array.iter (fun r ->
Array.iter (fun q ->
Array.iter (fun p ->
m_pqr.{p,q,r} <- Four_idx_storage.get_phys ee_ints p q r s
) (Util.array_range 1 n_ao)
) (Util.array_range 1 n_ao)
) (Util.array_range 1 n_ao);
let m_p_qr =
Bigarray.reshape (Bigarray.genarray_of_array3 m_pqr) [| n_ao ; n_ao*n_ao |]
|> Bigarray.array2_of_genarray
|> Matrix.of_bigarray_inplace
in
(* (qr,i) = <i r|q s> = \sum_p <p r | q s> C_{pi} *)
Matrix.gemm_tn_inplace ~c:m_qr_i m_p_qr m_C;
let m_q_ri =
let x = Matrix.to_bigarray_inplace m_qr_i |> Bigarray.genarray_of_array2 in
Bigarray.reshape_2 x n_ao (n_ao*n_mo) |> Matrix.of_bigarray_inplace
in
(* (ri,j) = <i r | j s> = \sum_q <i r | q s> C_{qj} *)
Matrix.gemm_tn_inplace ~c:m_ri_j m_q_ri m_C;
let m_r_ij =
let x = Matrix.to_bigarray_inplace m_ri_j |> Bigarray.genarray_of_array2 in
Bigarray.reshape_2 x n_ao (n_mo*n_mo) |> Matrix.of_bigarray_inplace
in
(* (ij,k) = <i k | j s> = \sum_r <i r | j s> C_{rk} *)
Matrix.gemm_tn_inplace ~c:m_ij_k m_r_ij m_C;
let m_ijk =
let x = Matrix.to_bigarray_inplace m_ij_k |> Bigarray.genarray_of_array2 in
Bigarray.reshape x [| n_mo ; n_mo ; n_mo |]
|> Bigarray.array3_of_genarray
in
let m_Cx = Matrix.to_bigarray_inplace m_C in
Array.iter (fun j ->
Array.iter (fun i ->
m_b12.{i,j} <- m_b12.{i,j} +. m_Cx.{s,j} *. (m_ijk.{i,i,i} -. m_ijk.{j,i,j});
m_a12.{i,j} <- m_a12.{i,j} +. m_ijk.{i,i,j} *. m_Cx.{s,j} -.
0.25 *. ( (m_ijk.{i,i,i} -. m_ijk.{j,i,j}) *. m_Cx.{s,i} +.
(m_ijk.{j,j,j} -. m_ijk.{i,j,i}) *. m_Cx.{s,j})
) (Util.array_range 1 n_mo);
v_d.{j} <- v_d.{j} +. m_ijk.{j,j,j} *. m_Cx.{s,j}
) (Util.array_range 1 n_mo)
) (Util.array_range 1 n_ao);
let f i j =
if i=j then
0.
else
begin
let x = 1./. sqrt (m_b12.{i,j} *. m_b12.{i,j} +. m_a12.{i,j} *. m_a12.{i,j} ) in
if asin (m_b12.{i,j} /. x) > 0. then
0.25 *. acos( -. m_a12.{i,j} *. x)
else
-. 0.25 *. acos( -. m_a12.{i,j} *. x )
end
in
(
Matrix.init_cols n_mo n_mo ( fun i j -> if i<=j then f i j else -. (f j i) ),
Vector.sum (Vector.of_bigarray_inplace v_d)
)
(* Edmiston-Rudenberg:1 ends here *)
(* Boys *)
(* [[file:~/QCaml/mo/localization.org::*Boys][Boys:1]] *)
let kappa_boys in_basis =
let ao_basis =
Basis.simulation in_basis
|> Simulation.ao_basis
in
let multipole = Ao.Basis.multipole ao_basis in
fun m_C ->
let n_mo = Matrix.dim2 m_C in
let phi_x_phi = Matrix.xt_o_x ~x:m_C ~o:(multipole "x") in
let phi_y_phi = Matrix.xt_o_x ~x:m_C ~o:(multipole "y") in
let phi_z_phi = Matrix.xt_o_x ~x:m_C ~o:(multipole "z") in
let m_b12 =
let g x i j =
let x_ii = x%:(i,i) in
let x_jj = x%:(j,j) in
let x_ij = x%:(i,j) in
(x_ii -. x_jj) *. x_ij
in
Matrix.init_cols n_mo n_mo (fun i j ->
let x =
(g phi_x_phi i j) +. (g phi_y_phi i j) +. (g phi_z_phi i j)
in
if (abs_float x > 1.e-15) then x else 0.
)
in
let m_a12 =
let g x i j =
let x_ii = x%:(i,i) in
let x_jj = x%:(j,j) in
let x_ij = x%:(i,j) in
let y = x_ii -. x_jj in
(x_ij *. x_ij) -. 0.25 *. y *. y
in
Matrix.init_cols n_mo n_mo (fun i j ->
let x =
(g phi_x_phi i j) +. (g phi_y_phi i j) +. (g phi_z_phi i j)
in
if (abs_float x > 1.e-15) then x else 0.
)
in
let f i j =
let pi = Constants.pi in
if i=j then
0.
else
let x = atan2 (m_b12%:(i,j)) (m_a12%:(i,j)) in
if x >= 0. then
0.25 *. (pi -. x)
else
-. 0.25 *. ( pi +. x)
in
(
Matrix.init_cols n_mo n_mo ( fun i j -> if i>j then f i j else -. (f j i) ),
let r2 x y z = x*.x +. y*.y +. z*.z in
Vector.init n_mo ( fun i ->
r2 (phi_x_phi%:(i,i)) (phi_y_phi%:(i,i)) (phi_z_phi%:(i,i)))
|> Vector.sum
)
(* Boys:1 ends here *)
(* | ~kappa~ | Returns the $\kappa$ antisymmetric matrix used for the rotation matrix and the value of the localization function |
* | ~make~ | Performs the orbital localization | *)
(* [[file:~/QCaml/mo/localization.org::*Access][Access:2]] *)
let kind t = t.kind
let simulation t = Basis.simulation t.mo_basis
let selected_mos t = t.selected_mos
let kappa ~kind =
match kind with
| Edmiston -> kappa_edmiston
| Boys -> kappa_boys
let n_iterations t =
Array.fold_left (fun accu x ->
match Lazy.force x with
| Some _ -> accu + 1
| None -> accu
) 0 t.data
let last_iteration t =
Util.of_some @@ Lazy.force t.data.(n_iterations t - 1)
(*
let ao_basis t = Simulation.ao_basis (simulation t)
*)
2021-02-03 09:23:20 +01:00
let make ~kind ?(max_iter=500) ?(convergence=1.e-6) mo_basis selected_mos =
2021-01-30 19:07:59 +01:00
let kappa_loc = kappa ~kind mo_basis in
let mo_array = Matrix.to_col_vecs (Basis.mo_coef mo_basis) in
let mos_vec_list = List.map (fun i -> mo_array.(i-1)) selected_mos in
let x: (ao,loc) Matrix.t =
Matrix.of_col_vecs_list mos_vec_list
in
2021-02-01 16:35:58 +01:00
let next_coef kappa x =
2021-01-30 19:07:59 +01:00
let r = Matrix.exponential_antisymmetric kappa in
let m_C = Matrix.gemm_nt x r in
m_C
in
let data_initial =
let iteration = 0
2021-02-03 10:47:34 +01:00
and scaling = 0.1
2021-01-30 19:07:59 +01:00
in
2021-02-01 16:35:58 +01:00
let kappa, loc_value = kappa_loc x in
2021-02-03 09:23:20 +01:00
let convergence = abs_float (Matrix.amax kappa) in
2021-02-01 16:35:58 +01:00
let kappa = Matrix.scale scaling kappa in
let coefficients = next_coef kappa x in
2021-02-03 09:23:20 +01:00
{ coefficients ; kappa ; scaling ; convergence ; loc_value ; iteration }
2021-01-30 19:07:59 +01:00
in
let iteration data =
2021-02-03 10:47:34 +01:00
let iteration = data.iteration+1 in
let new_kappa, new_loc_value = kappa_loc data.coefficients in
let new_convergence = abs_float (Matrix.amax new_kappa) in
let accept =
new_loc_value >= data.loc_value*.0.98
2021-01-30 19:07:59 +01:00
in
2021-02-03 10:47:34 +01:00
if accept then
let coefficients = next_coef new_kappa data.coefficients in
let scaling = min 1. (data.scaling *. 1.1) in
let kappa = Matrix.scale scaling new_kappa in
let convergence = new_convergence in
let loc_value = new_loc_value in
{ coefficients ; kappa ; scaling ; convergence ; loc_value ; iteration }
else
let scaling =
data.scaling *. 0.5
in
{ data with scaling ; iteration }
2021-01-30 19:07:59 +01:00
in
let array_data =
let storage =
Array.make max_iter None
in
let rec loop = function
| 0 -> Some (iteration data_initial)
| n -> begin
match storage.(n) with
| Some result -> Some result
| None -> begin
let data = loop (n-1) in
match data with
| None -> None
| Some data -> begin
(* Check convergence *)
let converged =
2021-02-03 09:23:20 +01:00
data.convergence < convergence
2021-01-30 19:07:59 +01:00
in
if converged then
None
else
begin
storage.(n-1) <- Some data ;
storage.(n) <- Some (iteration data);
storage.(n)
end
end
end
end
in
Array.init max_iter (fun i -> lazy (loop i))
in
{ kind ; mo_basis ; data = array_data ; selected_mos }
let to_basis t =
let mo_basis = t.mo_basis in
let simulation = Basis.simulation mo_basis in
let mo_occupation = Basis.mo_occupation mo_basis in
let data = last_iteration t in
let mo_coef_array = Matrix.to_col_vecs (Basis.mo_coef mo_basis) in
let new_mos =
Matrix.to_col_vecs data.coefficients
in
selected_mos t
2021-02-03 08:50:52 +01:00
|> List.iteri (fun i j -> mo_coef_array.(j-1) <- new_mos.(i)) ;
2021-01-30 19:07:59 +01:00
let mo_coef = Matrix.of_col_vecs mo_coef_array in
Basis.make ~simulation ~mo_type:(Localized "Boys") ~mo_occupation ~mo_coef ()
(* Access:2 ends here *)
(* [[file:~/QCaml/mo/localization.org::*Printers][Printers:2]] *)
2021-02-03 09:23:20 +01:00
let linewidth = 60
let pp_iterations ppf t =
let line = (String.make linewidth '-') in
Format.fprintf ppf "@[%4s%s@]@." "" line;
Format.fprintf ppf "@[%4s@[%5s@]@,@[%16s@]@,@[%16s@]@,@[%11s@]@]@."
"" "#" "Localization " "Convergence" "Scaling";
Format.fprintf ppf "@[%4s%s@]@." "" line;
Array.iter (fun data ->
let data = Lazy.force data in
match data with
| None -> ()
| Some data ->
let loc = data.loc_value in
let conv = data.convergence in
let scaling = data.scaling in
let iteration = data.iteration in
begin
Format.fprintf ppf "@[%4s@[%5d@]@,@[%16.8f@]@,@[%16.4e@]@,@[%11.4f@]@]@." ""
iteration loc conv scaling ;
end
) t.data;
Format.fprintf ppf "@[%4s%s@]@." "" line
let pp ppf t =
Format.fprintf ppf "@.@[%s@]@." (String.make 70 '=');
Format.fprintf ppf "@[%34s %-34s@]@." (match t.kind with
| Boys -> "Boys"
| Edmiston -> "Edmiston-Ruedenberg"
) "MO Localization";
Format.fprintf ppf "@[%s@]@.@." (String.make 70 '=');
Format.fprintf ppf "@[%a@]@." pp_iterations t;
2021-01-30 19:07:59 +01:00
(* Printers:2 ends here *)