Crystal-MET/src/utils.py

396 lines
13 KiB
Python
Raw Normal View History

2021-02-26 15:48:23 +01:00
import numpy as np
import operator
import sys
def distance(a,b):
# Returns the 3D distance between a and b where
# a and b are array where x, y and z are at the
# position 0, 1 and 2
x = a[0]-b[0]
y = a[1]-b[1]
z = a[2]-b[2]
return np.sqrt(x**2+y**2+z**2)
def get_cell_matrix(a,b,c,alpha,beta,gamma):
# Computing the volume of the primitive cell
omega = a*b*c*np.sqrt(1-np.cos(alpha)**2-np.cos(beta)**2-np.cos(gamma)**2+2*np.cos(alpha)*np.cos(beta)*np.cos(gamma))
# Computing the matrix
M = [
[a,b*np.cos(gamma),c*np.cos(beta)],
[0,b*np.sin(gamma),c*(np.cos(alpha)-np.cos(beta)*np.cos(gamma))/(np.sin(gamma))],
[0,0,omega/(a*b*np.sin(gamma))]
]
return M
def big_cell(generator,symGenerator,a,b,c,alpha,beta,gamma,nA,nB,nC):
coords = []
# Computing the matrix converting fractional to cartesian
fracToCart = get_cell_matrix(a,b,c,alpha,beta,gamma)
for gen in generator:
x = gen[1]
y = gen[2]
z = gen[3]
for sym in symGenerator:
u = eval(sym[0])
v = eval(sym[1])
w = eval(sym[2])
# Making sure the value is within the range [0,1]
u = u + 1*(u<0) - 1*(u>1)
v = v + 1*(v<0) - 1*(v>1)
w = w + 1*(w<0) - 1*(w>1)
coords.append([u,v,w,gen[0]])
# Deleting the redundant atoms
toDel = []
for i in range(len(coords)-1):
for j in range(i+1,len(coords)):
# Computing the distance using the minimum image convention
# as described in Appendix B equation 9 of
# "Statistical Mechanics : Theory and Molecular Simulations
# Mark E. Tuckerman"
r1 = np.array(coords[i][:3])
r2 = np.array(coords[j][:3])
r12 = r1-r2
da = np.sqrt(r12[0]**2+r12[1]**2+r12[2]**2)
2021-02-26 15:48:23 +01:00
r12 = r12 - np.round(r12)
db = da - np.sqrt(r12[0]**2+r12[1]**2+r12[2]**2)
2021-02-26 15:48:23 +01:00
r12 = np.matmul(fracToCart,r12)
d = np.sqrt(r12[0]**2+r12[1]**2+r12[2]**2)
if(d<1e-2):
2021-02-26 15:48:23 +01:00
# We check if we don't already want to delete this atom
if j not in toDel:
toDel.append(j)
toDel = sorted(toDel)
2021-02-26 15:48:23 +01:00
# We delete the atoms in the list
for i in range(len(toDel)):
coords.pop(toDel[i]-i)
newCoords = []
# We replicate the cell nA, nB, nC times
for at in coords:
newCoords.append([at[0],at[1],at[2],at[3]])
for a in range(1,nA):
newCoords.append([at[0]+a,at[1],at[2],at[3]])
for b in range(1,nB):
newCoords.append([at[0]+a,at[1]+b,at[2],at[3]])
for c in range(1,nC):
newCoords.append([at[0]+a,at[1]+b,at[2]+c,at[3]])
for c in range(1,nC):
newCoords.append([at[0]+a,at[1],at[2]+c,at[3]])
for b in range(1,nB):
newCoords.append([at[0],at[1]+b,at[2],at[3]])
for c in range(1,nC):
newCoords.append([at[0],at[1]+b,at[2]+c,at[3]])
for c in range(1,nC):
newCoords.append([at[0],at[1],at[2]+c,at[3]])
# Now we convert the fractionnal coordinates to cartesian coordinates
coords = []
for at in newCoords:
r = [at[0],at[1],at[2]]
rxyz = np.matmul(fracToCart,r)
coords.append([rxyz[0],rxyz[1],rxyz[2],at[3],'C'])
2021-02-26 15:48:23 +01:00
# Returns the list of the atoms [x,y,z,label,second_label]
return coords
# Translates all the coordinates with the vector v
def translate(v,coordinates):
for c in coordinates:
c[0] += v[0]
c[1] += v[1]
c[2] += v[2]
return coordinates
# Finds the point at the center of the given atoms that are the
# closest to the origin
2022-03-03 17:12:42 +01:00
def find_center(centerList, coordinates, without=[]):
2021-02-26 15:48:23 +01:00
centers = []
for i in range(len(centerList)):
centers.append([100,100,100]) # Setting a large value for each center
for c in centers:
c.append(distance(c,[0,0,0])) # Computing the distance to the origin
for at in coordinates:
2022-03-03 17:12:42 +01:00
w = True
for a in without:
if distance(at, a) < 1e-6:
w = False
break
if not w:
continue
2021-02-26 15:48:23 +01:00
if at[3] in centerList:
centers = sorted(centers, key=operator.itemgetter(3)) # Sorting the list with respect to the distance to the origin
d = distance(at,[0,0,0])
if d <= centers[-1][-1] and d > 0.0:
2021-02-26 15:48:23 +01:00
centers[-1] = [at[0],at[1],at[2],d]
center = np.mean(centers,axis=0)[:3] # Computing the barycenter
return center
# Defines a rotation matrix that will put r1 at the position r2
def rotation_matrix(r1,r2):
r1 = np.array(r1)/np.linalg.norm(r1)
r2 = np.array(r2)/np.linalg.norm(r2)
# Computing the cross product which is the vector around which
# the rotation is done
crossProduct = np.cross(r1,r2)
crossProduct = crossProduct/np.linalg.norm(crossProduct)
# Computing the angle of the rotation
a = np.arccos(np.dot(r1,r2))
c = np.cos(a)
s = np.sin(a)
x = crossProduct[0]
y = crossProduct[1]
z = crossProduct[2]
M = [
[x**2*(1-c)+c,x*y*(1-c)-z*s,x*z*(1-c)+y*s],
[x*y*(1-c)+z*s,y**2*(1-c)+c,y*z*(1-c)-x*s],
[x*z*(1-c)-y*s,y*z*(1-c)+x*s,z**2*(1-c)+c]
]
return M
# Rotates all the coordinates using the rotation matric M
def rotate(M,coordinates):
for i in range(len(coordinates)):
r = [coordinates[i][0],coordinates[i][1],coordinates[i][2]]
rV = np.matmul(M,r)
coordinates[i][0] = rV[0]
coordinates[i][1] = rV[1]
coordinates[i][2] = rV[2]
return coordinates
# Cuts a sphere centered on the origin in the coordinates
def cut_sphere(coordinates,r):
sphere = []
for i in range(len(coordinates)):
if distance(coordinates[i],[0,0,0]) <= r:
sphere.append(coordinates[i])
return sphere
# Finds the fragment in the coordinates
def find_fragment(coordinates, patterns, npatterns,notInFrag):
inFrag = []
for n in range(len(patterns)):
pattern = patterns[n]
npattern = npatterns[n]
for i in range(npattern):
c = [100,100,100]
dc = distance([0,0,0],c)
inPattern = []
# Finding the closest atom of the first type in the pattern
for at in coordinates:
if at[3] == pattern[1]:
d = distance([0,0,0],at)
if d > 10:
break
2021-02-26 15:48:23 +01:00
if d < dc :
accept = True
for exc in notInFrag:
d = distance(exc,at)
if d < 1e-5:
accept = False
if accept and coordinates.index(at) not in inFrag:
c = [at[0],at[1],at[2],0.0, coordinates.index(at)]
dc = distance([0,0,0],c)
# Finding the rest of the pattern around the atom previously found
atIn = []
for j in range(0,len(pattern),2):
d = distance(c,[100,100,100])
# Initializing the atoms
for k in range(pattern[j]):
atIn.append([100,100,100,d])
for at in coordinates:
if distance(at,[0,0,0]) > 10:
break
2021-02-26 15:48:23 +01:00
if at[3] == pattern[j+1]:
atIn = sorted(atIn,key=operator.itemgetter(3))
d = distance(at,c)
trial = [at[0],at[1],at[2],d,coordinates.index(at)]
if d < atIn[-1][3] and trial not in atIn:
accept = True
for exc in notInFrag:
d = distance(exc,trial)
if d < 1e-5:
accept = False
if accept:
atIn[-1] = trial
2021-02-26 15:48:23 +01:00
for at in atIn:
inPattern.append(at[4])
for at in inPattern:
if at not in inFrag:
inFrag.append(at)
for at in inFrag:
coordinates[at][4] = 'O'
return len(inFrag), coordinates
# Finds the pseudopotential layer around
# the fragment
def find_pseudo(coordinates, rPP, notInPseudo):
for at in coordinates:
if at[4] != 'O':
continue
for i in range(len(coordinates)):
if coordinates[i][4] != 'C':
continue
d = distance(at,coordinates[i])
if d < rPP:
coordinates[i][4] = 'Cl'
return coordinates
# Creates lists containing the neighbours of each
# atom
def find_neighbours(coordinates, atoms):
neighbourList = [[] for i in range(len(coordinates))]
atoms = np.array(atoms).flatten()
for i in range(len(coordinates)-1):
for j in range(i+1,len(coordinates)):
li = coordinates[i][3] # Label of the atom i
lj = coordinates[j][3] # Label of the atom j
ii = np.where(atoms==li)[0]
jj = np.where(atoms==lj)[0]
ci = float(atoms[ii+1]) # Charge of the atom i
cj = float(atoms[jj+1]) # Charge of the atom j
if ci*cj < 0: # Checking if the charges have opposite signs
d = distance(coordinates[i],coordinates[j])
if d < float(atoms[ii+3]) and d < float(atoms[jj+3]):
neighbourList[i].append(j)
neighbourList[j].append(i)
return neighbourList
# For each atom, finds if it has the correct number of neighbours,
# if not, modify its charge
def evjen_charges(coordinates,atoms):
neighbourList = find_neighbours(coordinates,atoms)
atoms = np.array(atoms).flatten()
charges = []
for i in range(len(coordinates)):
li = coordinates[i][3]
ii = np.where(atoms==li)[0]
nr = len(neighbourList[i])
nt = int(atoms[ii+2])
ci = float(atoms[ii+1])
if nr > nt:
print("Error : too much neighbours for atom n°%i, count %i neighbours where it should have a maximum of %i"%(i,nr,nt))
sys.exit()
charges.append(ci*nr/nt)
return charges
# Computes the nuclear repulsion
def nuclear_repulsion(coordinates,charges):
rep = 0.0
for i in range(len(coordinates)-1):
for j in range(i+1,len(coordinates)):
rij = distance(coordinates[i],coordinates[j])
ci = charges[i]
cj = charges[j]
if(rij < 1):
print(i,j,"\n",coordinates[i],"\n",coordinates[j],"\n",rij)
rep += (ci*cj)/rij
return rep
# Computes the symmetry in the whole system
def compute_symmetry(coordinates,charges,symmetry):
symmetrizedCoordinates = []
symmetrizedCharges = []
uniqueIndexList = [] # The list containing the indexes of the unique atoms
treated = [] # Will store the index of the atoms already treated
symOp = []
# Storing all the symmetry operations
for s in symmetry:
if s == 'C2x':
symOp.append(np.array([1,-1,-1]))
elif s == 'C2y':
symOp.append(np.array([-1,1,-1]))
elif s == 'C2z':
symOp.append(np.array([-1,-1,1]))
elif s == 'xOy':
symOp.append(np.array([1,1,-1]))
elif s == 'xOz':
symOp.append(np.array([1,-1,1]))
elif s == 'yOz':
symOp.append(np.array([-1,1,1]))
elif s == 'i':
symOp.append(np.array([-1,-1,-1]))
for i in range(len(coordinates)):
if i in treated:
continue
treated.append(i)
at1 = np.array(coordinates[i][:3])
symmetrizedCoordinates.append(coordinates[i])
symmetrizedCharges.append(charges[i])
uniqueIndexList.append(len(symmetrizedCoordinates)-1)
for j in range(len(coordinates)):
if j in treated or coordinates[i][3] != coordinates[j][3]:
continue
at2 = np.array(coordinates[j][:3])
for s in symOp:
if distance(at1,at1*s) > 1e-4 and distance(at2,at1*s) < 1e-4: # Checking if op.at1 != at1 and that op.at2 = at1
p = at1*s
treated.append(j)
symmetrizedCoordinates.append([p[0],p[1],p[2],coordinates[i][3],coordinates[i][4]])
symmetrizedCharges.append(charges[i])
break
return symmetrizedCoordinates,symmetrizedCharges,uniqueIndexList