New_Website/tddft-md/formal.html

470 lines
13 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Theory of Cluster Dynamics</title>
<link href="../style.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="container">
<div id="header">
<div id="menu">
<div id="navMenu">
<ul>
<li style="margin-top:1px;border-top:1px solid #B0C4DE; "><a href="../index.html">Home</a></li>
<li><a href="../intro.html">Introductory Overview</a></li>
<li><a href="../research.html">Scientific Information</a></li>
<li><a href="../staff.html">Staff</a></li>
<li><a href="../publications.html">Publications/Talks</a></li>
<li><a href="../contact.html">Contact</a></li>
</ul>
</div>
</div>
<div id="image">
<p><font color="white" size="6"><b>Theory of Cluster Dynamics</b></font><font size="5"><br>
</font><font size="6">
</font><font size="5">The Toulouse - Erlangen Collaboration</font></p>
</div>
<div id="content">
<a name="oben">
<div style="margin:15px;width:770px;border:1px solid gray;float:left;font-size:10px;">
<div style="width:220px;float:left;text-align:center;">
<a href="../analysis/detail1.html">1. Analysis of cluster dynamics</a>
</div>
<div style="width:220px;float:left;text-align:center;font-size:10px;">
<a href="../analysis/detail2.html"> 2. Clusters in external fields</a>
</div>
<div style="width:220px;float:left;text-align:center;font-weight:900;font-size:12px;">
<a href="formal.html"> 3. Theoretical developments </a>
</div>
</div>
</a>
<div id="WideContent">
<div id="contentBoxWide">
<div id="contentBoxHeader">
<p>Time Dependent Density Functional Theory with Molecular Dynamics </p>
</div>
<div id="contentBoxContent">
<P>
<DIV ALIGN="CENTER">
<FONT SIZE="+2"><B> TDLDA-MD:</B></FONT>
<BR>
<BR><FONT SIZE="+1"><B>Time-dependent local-density approximation
plus ionic molecular dynamics</B></FONT>
<BR>
</DIV>
<P>
(<EM>This is a very short summary of our formal scheme. A most
detailed description is found in </EM>[<a href="../literatur.html#own1281">303</a>].)
<P>
The
<FONT COLOR="#ff0000"> electron cloud</FONT> is described by density functional theory at
the level of TDLDA. The dynamical degrees of freedom are the set of
occupied
<FONT COLOR="#ff0000"> single-electron wavefunctions
<FONT COLOR="#ff0000"><!-- MATH
$\varphi_\alpha$
-->
<IMG
WIDTH="26" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
SRC="img1.png"
ALT="\bgroup\color{red}$ \varphi_\alpha$\egroup"></FONT></FONT>. The
<FONT COLOR="#00b300"> ions</FONT> are treated by classical MD and their degrees of freedom are
the
<FONT COLOR="#00b300"> positions <i><b>R<sub>I</sub></b></i> and momenta <i><b>P<sub>I</sub></b></i>
<FONT COLOR="#00b300"><!-- MATH
$({R}_I,{P}_I)$
-->
<!-- <IMG
WIDTH="69" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img2.png"
ALT="\bgroup\color{dgreen}$ ({R}_I,{P}_I)$\egroup"></FONT></FONT>.--></FONT></FONT>. The starting
point is the total energy given by:
<BR>
<DIV ALIGN="CENTER">
<!-- MATH
\begin{eqnarray*}
E_{\rm total}
&=&
{\color{red}
E_{\rm kin}(\{\varphi_\alpha\})
+
E_{\rm C}(\rho)
+
E_{\rm xc}^{\rm (LDA)}(\rho_\uparrow,\rho_\downarrow)
}
+
E_{\rm el,ion}({\color{red} \rho},{\color{dgreen} \{{R}_I\}})
+
{\color{dgreen} E_{\rm ion}(\{{R}_I,{P}_I\})}
+
E_{\rm ext}({\color{red} \rho},{\color{dgreen} {R}_I},t)
\quad.
\end{eqnarray*}
-->
<TABLE CELLPADDING="0" ALIGN="CENTER" WIDTH="100%">
<TR VALIGN="MIDDLE"><TD NOWRAP ALIGN="RIGHT"><IMG
WIDTH="47" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img3.png"
ALT="$\displaystyle E_{\rm total}$"></TD>
<TD WIDTH="10" ALIGN="CENTER" NOWRAP><IMG
WIDTH="19" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
SRC="img4.png"
ALT="$\displaystyle =$"></TD>
<TD ALIGN="LEFT" NOWRAP><IMG
WIDTH="690" HEIGHT="43" ALIGN="MIDDLE" BORDER="0"
SRC="img5.png"
ALT="$\displaystyle {\color{red}
E_{\rm kin}(\{\varphi_\alpha\})
+
E_{\rm C}(\rho)
+
...
...}_I,{P}_I\})}
+
E_{\rm ext}({\color{red} \rho},{\color{dgreen} {R}_I},t)
\quad.$"></TD>
<TD WIDTH=10 ALIGN="RIGHT">
&nbsp;</TD></TR>
</TABLE></DIV>
<BR CLEAR="ALL">
<P>
The electronic kinetic energy
<FONT COLOR="#00b300"><!-- MATH
${\color{red} E_{\rm kin}}$
-->
<IMG
WIDTH="37" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img6.png"
ALT="\bgroup\color{dgreen}$ {\color{red} E_{\rm kin}}$\egroup"></FONT> employs the
single-electron wavefunctions
<FONT COLOR="#00b300"><!-- MATH
${\color{red} \varphi_\alpha}$
-->
<IMG
WIDTH="26" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
SRC="img7.png"
ALT="\bgroup\color{dgreen}$ {\color{red} \varphi_\alpha}$\egroup"></FONT> which maintains
the quantum mechanical shell effects. All other electronic energies
refer only to the local spin-densities or total density
<!-- MATH
${\color{red} \rho=\rho_\uparrow+\rho_\downarrow}$
-->
<IMG
WIDTH="92" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
SRC="img8.png"
ALT="\bgroup\color{dgreen}$ {\color{red} \rho=\rho_\uparrow+\rho_\downarrow}$\egroup">; the Coulomb energy
<FONT COLOR="#00b300"><!-- MATH
${\color{red} E_{\rm C}}$
-->
<IMG
WIDTH="29" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img9.png"
ALT="\bgroup\color{dgreen}$ {\color{red} E_{\rm C}}$\egroup"></FONT> naturally, and the exchange-correlation energy
<FONT COLOR="#00b300"><!-- MATH
${\color{red} E_{\rm xc}}$
-->
<IMG
WIDTH="32" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img10.png"
ALT="\bgroup\color{dgreen}$ {\color{red} E_{\rm xc}}$\egroup"></FONT> by virtue of the LDA (often augmented by a
self-interaction correction (SIC) <a href="../literatur.html#own1252">[277]</a>). The electron-ion coupling
<FONT COLOR="#00b300"><!-- MATH
$E_{\rm el,ion}$
-->
<IMG
WIDTH="51" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img11.png"
ALT="\bgroup\color{dgreen}$ E_{\rm el,ion}$\egroup"></FONT> is realized by pseudo-potentials, mostly soft local
ones <a href="../literatur.html#own1216">[249]</a>. The ionic part
<FONT COLOR="#00b300"><!-- MATH
${\color{dgreen} E_{\rm ion}}$
-->
<IMG
WIDTH="37" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img12.png"
ALT="\bgroup\color{dgreen}$ {\color{dgreen} E_{\rm ion}}$\egroup"></FONT> is composed of Coulomb
interaction and kinetic energy. Excitation mechanisms (laser, ionic
collisions) are described in
<FONT COLOR="#00b300"><!-- MATH
$E_{\rm ext}$
-->
<IMG
WIDTH="37" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img13.png"
ALT="\bgroup\color{dgreen}$ E_{\rm ext}$\egroup"></FONT> as external time-dependent
potentials.
<P>
The coupled equations of motion are obtained in standard manner by
variation. They read
<!-- MATH
\begin{displaymath}
{\color{red}
\imath\partial_t\varphi_\alpha
=
\Big(\frac{\hat{p}^2}{2m}
+
\frac{\delta E_{\rm total}}{\delta\rho_{\sigma_\alpha}}\Big)
\varphi_\alpha
}
\qquad,\qquad
{\color{dgreen} \partial_t{R}_I
=
\frac{{P}_I}{M_I}
\quad,\quad
\partial_t{P}_I
=
-\nabla_{{R}_I}E_{\rm total}}
\quad.
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="618" HEIGHT="65" ALIGN="MIDDLE" BORDER="0"
SRC="img14.png"
ALT="\bgroup\color{dgreen}$\displaystyle {\color{red}
\imath\partial_t\varphi_\alpha...
...M_I}
\quad,\quad
\partial_t{P}_I
=
-\nabla_{{R}_I}E_{\rm total}}
\quad.
$\egroup">
</DIV><P>
where
<FONT COLOR="#00b300"><!-- MATH
${\color{red} \sigma_\alpha}$
-->
<IMG
WIDTH="24" HEIGHT="33" ALIGN="MIDDLE" BORDER="0"
SRC="img15.png"
ALT="\bgroup\color{dgreen}$ {\color{red} \sigma_\alpha}$\egroup"></FONT> is the spin orientation of the state
<FONT COLOR="#00b300"><!-- MATH
${\color{red} \alpha}$
-->
<IMG
WIDTH="16" HEIGHT="19" ALIGN="BOTTOM" BORDER="0"
SRC="img16.png"
ALT="\bgroup\color{dgreen}$ {\color{red} \alpha}$\egroup"></FONT>. The equations imply a non-adiabatic coupling which
goes beyond usual Born-Oppenheimer approach. Non-adiabatic effects
become crucial in cluster dynamics induced by strong fields. The
numerical solution involves the representation of the wavefunctions on
a spatial grid, time-splitting for the electronic propagation and the
Verlet algorithm for MD, for details see [<a href="../literatur.html#own1230">254</a>]. The obtained
wavefunctions, densities, and ionic coordinates allow to compute a
wide variety of observables, <!-- at the side of the electrons -->e.g.
<FONT COLOR="#ff0000"> optical absorption spectra</FONT> [<a href="../literatur.html#own1155">9</a>],
<FONT COLOR="#ff0000"> angular distributions</FONT>
[<a href="../literatur.html#own1288">313</a>],
<FONT COLOR="#ff0000"> emission spectra</FONT> [<a href="../literatur.html#own1285">304</a>],
or
<FONT COLOR="#ff0000"> ionization</FONT> [<a href="../literatur.html#own1186">208</a>] for electronic degrees of freedom.
The
<FONT COLOR="#00b300"> ionic configurations</FONT> can be measured indirectly through optical
response and its dynamics with various pump and probe scenarios
[<a href="../literatur.html#own1246">290</a>].
<P></P>
<P>
Often, we use a
<FONT COLOR="#ff0000"> semi-classical description for the electronic
dynamics</FONT> at the level of Vlasov-LDA, particularly for energetic
processes and/or large clusters. Instead of the
<FONT COLOR="#ff0000"> wavefunctions</FONT>,
the key ingredient becomes here the
<FONT COLOR="#ff0000"> one-electron phase-space
distribution
<FONT COLOR="#ff0000"><!-- MATH
$f({r},{p},t)$
-->
<IMG
WIDTH="71" HEIGHT="37" ALIGN="MIDDLE" BORDER="0"
SRC="img17.png"
ALT="\bgroup\color{red}$ f({r},{p},t)$\egroup"></FONT></FONT>. The quantum-mechanical
propagation for the electrons is replaced by the Vlasov equation
<!-- MATH
\begin{displaymath}
{\color{red}
\partial_t f
=
\frac{{p}}{m}\nabla_{r}f
-
\Big(
\nabla_{r}\frac{\delta E_{\rm total}}{\delta\rho_{\sigma_\alpha}}
\Big)
\nabla_{p}f
}
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="270" HEIGHT="61" ALIGN="MIDDLE" BORDER="0"
SRC="img18.png"
ALT="\bgroup\color{red}$\displaystyle {\color{red}
\partial_t f
=
\frac{{p}}{m}\nabl...
...{\delta E_{\rm total}}{\delta\rho_{\sigma_\alpha}}
\Big)
\nabla_{p}f
}
$\egroup">
</DIV><P></P>
<P>
again non-adiabatically coupled to ionic motion as above.
Note that formally the same Kohn-Sham potential
<FONT COLOR="#ff0000"><!-- MATH
${\color{red} {\delta E_{\rm total}}\big/{\delta\rho_{\sigma_\alpha}}}$
-->
<IMG
WIDTH="102" HEIGHT="41" ALIGN="MIDDLE" BORDER="0"
SRC="img19.png"
ALT="\bgroup\color{red}$ {\color{red} {\delta E_{\rm total}}\big/{\delta\rho_{\sigma_\alpha}}}$\egroup"></FONT>
is employed. For a derivation and justification from TDLDA see
[<a href="../literatur.html#own1163">182</a>]. The Vlasov-LDA equation is solved with the
test-particle method where the distribution function
<FONT COLOR="#ff0000"><!-- MATH
${\color{red} f}$
-->
<IMG
WIDTH="16" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img20.png"
ALT="\bgroup\color{red}$ {\color{red} f}$\egroup"></FONT> is
represented as a sum of Gaussian test-particles which are propagated
again by the Verlet algorithm [<a href="../literatur.html#own1248">273</a>].
<P>
The semi-classical description makes it feasible to include dynamical
correlations from electron-electron collisions. This is achieved by
adding an &#220;hling-Uhlenbeck collision term leading to
<!-- MATH
\begin{displaymath}
{\color{red}
\partial_t f
=
\frac{{p}}{m}\nabla_{r}f
-
\Big(
\nabla_{r}\frac{\delta E_{\rm total}}{\delta\rho_{\sigma_\alpha}}
\Big)
\nabla_{p}f
+
I_{\rm UU}(f)
}
\quad.
\end{displaymath}
-->
<P></P>
<DIV ALIGN="CENTER">
<IMG
WIDTH="372" HEIGHT="61" ALIGN="MIDDLE" BORDER="0"
SRC="img21.png"
ALT="\bgroup\color{red}$\displaystyle {\color{red}
\partial_t f
=
\frac{{p}}{m}\nabl...
...\delta\rho_{\sigma_\alpha}}
\Big)
\nabla_{p}f
+
I_{\rm UU}(f)
}
\quad.
$\egroup">
</DIV><P>
The collision term
<FONT COLOR="#ff0000"><!-- MATH
${\color{red} I_{\rm UU}}$
-->
<IMG
WIDTH="34" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img22.png"
ALT="\bgroup\color{red}$ {\color{red} I_{\rm UU}}$\egroup"></FONT> is a non-linear functional of
the distribution function
<FONT COLOR="#ff0000"><!-- MATH
${\color{red} f}$
-->
<IMG
WIDTH="16" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img20.png"
ALT="\bgroup\color{red}$ {\color{red} f}$\egroup"></FONT>. It contains terms up to third
power in
<FONT COLOR="#ff0000"><!-- MATH
${\color{red} f}$
-->
<IMG
WIDTH="16" HEIGHT="35" ALIGN="MIDDLE" BORDER="0"
SRC="img20.png"
ALT="\bgroup\color{red}$ {\color{red} f}$\egroup"></FONT>. It is constructed from local and instantaneous
collisions which obey energy conservation, momentum conservation, and
the Pauli principle [<a href="../literatur.html#own1248">273</a>]. The resulting equation is called the
Vlasov-&#220;hling-Uhlenbeck approach (VUU).
<P>
<center>
<table width="70%">
<tr>
<td align="right">
<a href="#top">Back to top </a>
</td>
</tr>
</table>
</center>
<!-- <HR> --></HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"></A>
<!--End of Table of Child-Links-->
<!-- <HR>
<ADDRESS>
Paul-Gerhard Reinhard
2006-03-18
</ADDRESS> -->
<!-- START CONTENT HERE -->
</div>
</div>
</div>
</div>
<div id="footer">
<p></p>
</div>
</div>
</body>
</html>