New_Website/ourdynamics/our_dynamics.html

196 lines
6.1 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<title>Theory of Cluster Dynamics</title>
<link href="../style.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="container">
<div id="header">
<div id="menu">
<div id="navMenu">
<ul>
<li style="margin-top:1px;border-top:1px solid #B0C4DE; "><a href="../index.html">Home</a></li>
<li><a href="../intro.html">Introductory Overview</a></li>
<li><a href="../research.html">Scientific Information</a></li>
<li><a href="..//staff.html">Staff</a></li>
<li><a href="../publications.html">Publications/Talks</a></li>
<li><a href="../contact.html">Contact</a></li>
</ul>
</div>
</div>
<div id="image">
<p><font color="white" size="6"><b>Theory of Cluster Dynamics</b></font><font size="5"><br>
</font><font size="6">
</font><font size="5">The Toulouse - Erlangen Collaboration</font></p>
</div>
<div id="content">
<div style="margin:15px;width:770px;border:1px solid gray;float:left;font-size:10px;">
<div style="width:220px;float:left;text-align:center;">
<a href="../intro.html">1. What are clusters? </a>
</div>
<div style="width:220px;float:left;text-align:center;">
<a href="../dynamics.html"> 2. Why study cluster dynamics?</a>
</div>
<div style="width:220px;float:left;text-align:center;font-weight:900;font-size:12px;">
<a href="our_dynamics.html"> 3. How we deal with cluster dynamics </a>
</div>
</div>
<div id="WideContent">
<div id="contentBoxWide">
<div id="contentBoxHeader">
<p>Dynamics </p>
</div>
<div id="contentBoxContent">
<div style="text-align: center;">
<div style="text-align: justify;">
<h1>How we deal with cluster dynamics<br>
</h1>
The understanding of the complicated dynamical scenarios such as the
ones described previously requires dedicated theoretical modelling.
Cluster physics and even more so cluster dynamics lays at the interface
of several fields of science, especially chemistry and physics. The
theory of cluster dynamics has thus borrowed inspiration from these
various domains to develop its own and original methods. <br><br>
Not surprisingly, a direct transposition of methods well developed in a
given field only provides guidelines and a starter for further
developments. Still, it also allows to benchmark new developments on
well established test cases. Cluster dynamics has thus benefited a lot
from experience gained in chemistry, especially at the side of moderate
excitation, and in physics for more violent scenarios, especially from
solid state and nuclear physics. The description of cluster dynamics is
made difficult by two basic problems: The fact that one would like to
deal with large (although finite) systems and the fact that electrons
and ions move at awfully different time scales (typically a factor
100). This implies huge simulation times to be able to resolve
simultaneously electronic and ionic dynamics. One thus needs both
robust and simple approaches to overcome these two difficulties of time
scales and system size.<br>
<br>
<table style="border: 0px; float: left;">
<tr>
<td>
<a href="laser.html">
<img alt="laser"
src="laser_slide_small.jpg"
style="border: 0px solid ; width: 527px; height: 275px; float: left;">
</a>
</td>
<tr>
<td align="center">
<b>
Fig.1:
Irradiation of Na<sub>9</sub><sup>+</sup> by a laser pulse.
</b>
</td>
</tr>
</table>
In the case of violent excitation, the most robust and simple approaches
rely on Density Functional Theory, a theory developed since the mid
60's for electronic systems and which has met impressive successes, in bulk materials
as well as in finite molecules. <br><br>
<font color="red"><b>???In density functional
theory, the complicated many-body electronic problem is simplified as
it can be shown that the one body electronic density constitutes a key
ingredient, espcially for computing the energy of the system. The
extension of this theory to truly time-dependent processes is more
recent and still in development and cluster dynamics offers here a
fascinating domain of applications and testing.???</b></font> <br><br>
In order to illustrate
the capabilities of such methods we present here two examples of
cluster response to violent external excitation. Figure 1 shows the
irradiation of Na<sub>9</sub><sup>+</sup> by a laser pulse, while Figure 2
displays a collision of Na<sub>9</sub><sup>+</sup> with Ar<sup>8+</sup>
considered as an energetic projectile. The actual dynamical scenarios can be
visualized through the two movies below (click on the image to download
the corresponding movie). Various characteristics of the dynamics,
especially in
terms of time scales, are presented in both figures. These cartoons
demonstrate strong interactions between electrons and ions and a
complex non-adiabatic dynamics.<br>
<table>
<tr>
<td>
<a href="projectile.html"><img alt="projectile"
src="proj_slide_small.jpg"
style="border: 0px solid ; width: 518px; height: 276px;">
</a>
</td>
<td align="left">
<b>
Fig.2:
Collision of Na<sub>9</sub><sup>+</sup> with Ar<sup>8+</sup>
</b>
</td>
</tr>
</table>
<br>
</div>
<center>
<table width="70%">
<tr>
<td align="right">
<a href="#top">Back to top </a>
</td>
</tr>
</table>
</center>
<!--
<br>
<table style="width: 100%; text-align: left;" border="0" cellpadding="2"
cellspacing="2">
<tbody>
<tr>
<td style="vertical-align: top; text-align: center;"><a
href="laser.html"> </a></td>
<td style="vertical-align: top; text-align: center;"><a
href="projectile.html"></a><br>
</td>
</tr>
<tr>
<td style="vertical-align: top; text-align: center;"></td>
<td style="vertical-align: top; text-align: center;">.</td>
</tr>
</tbody>
</table>
<br>
<br>
-->
</div>
<!-- START CONTENT HERE -->
</div>
</div>
</div>
</div>
<div id="footer">
<p></p>
</div>
</div>
</body>
</html>