New_Website/ourdynamics/our_dynamics.html

2 lines
8.4 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type" content="application/xhtml+xml; charset=iso-8859-1" />
<title>Theory of Cluster Dynamics</title>
<link href="../style.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="container">
<div id="header">
<div id="menu">
<div id="navMenu">
<ul>
<li style="margin-top:1px;border-top:1px solid #B0C4DE; "><a href="../index.html">Home</a></li>
<li><a href="../intro.html">Introductory Overview</a></li>
<li><a href="../research.html">Scientific Information</a></li>
<li><a href="..//staff.html">Staff</a></li>
<li><a href="../publications.html">Publications/Talks</a></li>
<li><a href="../contact.html">Contact</a></li>
</ul>
</div>
</div>
<div id="image">
<p><font size="6" color="white"><b>Theory of Cluster Dynamics</b></font><font
size="5"><br />
</font><font size="6"> </font><font size="5">The Toulouse -
Erlangen Collaboration</font></p>
</div>
<div id="content">
<div style="margin:15px;width:770px;border:1px solid gray;float:left;font-size:10px;">
<div style="width:220px;float:left;text-align:center;"> <a href="../intro.html">1.
What are clusters? </a> </div>
<div style="width:220px;float:left;text-align:center;"> <a href="../dynamics.html">
2. Why study cluster dynamics?</a> </div>
<div style="width:220px;float:left;text-align:center;font-weight:900;font-size:12px;">
<a href="our_dynamics.html"> 3. How we deal with cluster dynamics
</a> </div>
</div>
<div id="WideContent">
<div id="contentBoxWide">
<div id="contentBoxHeader">
<p>Dynamics </p>
</div>
<div id="contentBoxContent">
<div style="text-align: center;">
<div style="text-align: justify;">
<h1>How we deal with cluster dynamics<br />
</h1>
The understanding of the complicated dynamical scenarios
such as the ones described previously requires dedicated
theoretical modelling. Cluster physics and even more so
cluster dynamics lays at the interface of several fields of
science, especially chemistry and physics. The theory of
cluster dynamics has thus borrowed inspiration from these
various domains to develop its own and original methods. <br />
<br />
Not surprisingly, a direct transposition of methods well
developed in a given field only provides guidelines and a
starter for further developments. Still, it also allows to
benchmark new developments on well established test cases.
Cluster dynamics has thus benefited a lot from experience
gained in chemistry, especially at the side of moderate
excitation, and in physics for more violent scenarios,
especially from solid state and nuclear physics. The
description of cluster dynamics is made difficult by two
basic problems: The fact that one would like to deal with
large (although finite) systems and the fact that electrons
and ions move at awfully different time scales (typically a
factor 100). This implies huge simulation times to be able
to resolve simultaneously electronic and ionic dynamics. One
thus needs both robust and simple approaches to overcome
these two difficulties of time scales and system size.<br />
<br />
<table style="border: 0px; float: left;">
<tbody>
<tr>
<td> <a href="laser.html"> <img alt="laser" src="laser_slide_small.jpg"
style="border: 0px solid ; width: 527px; height: 275px; float: left;" />
</a> </td>
</tr>
<tr>
<td align="center"> <b> Fig.1: Irradiation of Na<sub>9</sub><sup>+</sup>
by a laser pulse (click on figure to watch movie).
</b> </td>
</tr>
</tbody>
</table>
In the case of violent excitation, the most robust and
simple approaches rely on Density Functional Theory, a
theory developed since the mid 60's for electronic systems
and which has met impressive successes, in bulk materials as
well as in finite molecules. <br />
<br />
In density functional theory, the complicated many-body
electronic problem is simplified as it can be shown that the
one body electronic density constitutes a key ingredient,
espcially for computing the energy of the system. The
extension of this theory to truly time-dependent processes
is more recent and still in development and cluster dynamics
offers here a fascinating domain of applications and
testing.<br />
<br />
In order to illustrate the capabilities of such methods we
present here two examples of cluster response to violent
external excitation. Figure 1 shows the irradiation of Na<sub>9</sub><sup>+</sup>
by a laser pulse, while Figure 2 displays a collision of Na<sub>9</sub><sup>+</sup>
with Ar<sup>8+</sup> considered as an energetic projectile.
The actual dynamical scenarios can be visualized through the
two movies below (click on the image to download the
corresponding movie). Various characteristics of the
dynamics, especially in terms of time scales, are presented
in both figures. These cartoons demonstrate strong
interactions between electrons and ions and a complex
non-adiabatic dynamics.<br />
<table>
<tbody>
<tr>
<td> <a href="projectile.html"><img alt="projectile"
src="proj_slide_small.jpg"
style="border: 0px solid ; width: 518px; height: 276px;" />
</a> </td>
<td align="left"> <b> Fig.2: Collision of Na<sub>9</sub><sup>+</sup>
with Ar<sup>8+</sup></b><b> (click on figure to
watch movie)</b> </td>
</tr>
</tbody>
</table>
<br />
</div>
<center>
<table width="70%">
<tbody>
<tr>
<td align="right"> <a href="#top">Back to top </a> </td>
</tr>
</tbody>
</table>
</center>
<!--
<br><table style="width: 100%; text-align: left;" border="0" cellpadding="2" cellspacing="2"> <tbody> <tr> <td style="vertical-align: top; text-align: center;"><a href="laser.html"> </a></td> <td style="vertical-align: top; text-align: center;"><a
href="projectile.html"></a><br> </td> </tr> <tr> <td style="vertical-align: top; text-align: center;"></td> <td style="vertical-align: top; text-align: center;">.</td> </tr> </tbody>
</table><br><br>--> </div>
<!-- START CONTENT HERE --> </div>
</div>
</div>
</div>
<div id="footer">
<p></p>
</div>
</div>
</div>
</body>
</html>