diff --git a/contact.html b/contact.html index 0c7c85d..927609f 100644 --- a/contact.html +++ b/contact.html @@ -1,3 +1,3 @@ Theory of Cluster Dynamics
\ No newline at end of file + Suraud

Laboratoire de Physique Theorique
CNRS - Universite Paul Sabatier

Email: suraud@irsamc.ups-tlse.fr
  • P.-G. Reinhard

    Email : Paul-Gerhard.Reinhard@fau.de

  • Ph. M. Dinh

    Laboratoire de Physique Theorique
    CNRS - Universite Paul Sabatier

    Email: dinh@irsamc.ups-tlse.fr

  • M. + Belkacem

    Laboratoire de Physique Theorique
    CNRS - Universite Paul Sabatier

    Email: belkacem@irsamc.ups-tlse.fr



  • \ No newline at end of file diff --git a/staff.html b/staff.html index 60a8041..41a6354 100644 --- a/staff.html +++ b/staff.html @@ -1,4 +1,4 @@ - Theory of Cluster Dynamics

    Permanent Staff


    Recent non-permanent Staff

    Post-docs:

    • Jose-Maria Escartin*
    • Thomas Raitza*

    PhD Students:

    • Philipp Wopperer*
    • Bernhard Faber*
    • Matthias Baer*
    • Frank Fehrer*
    • Nader Slama*
    • Cong-Zhang Gao*
    • Lionel Lacombe*
    • Charline Lemma
    • Marc Vincendon
    • Jordan Heraud

    \ No newline at end of file diff --git a/tddft-md/formal.html b/tddft-md/formal.html index bcccb60..1889c9c 100644 --- a/tddft-md/formal.html +++ b/tddft-md/formal.html @@ -1,8 +1,8 @@ Theory of Cluster Dynamics
    \ No newline at end of file +

    The semi-classical description makes it feasible to include dynamical correlations from electron-electron collisions. This is achieved by adding an Uehling-Uhlenbeck collision term leading to

    \bgroup\color{red}$\displaystyle {\color{red} \partial_t f= \frac{{p}}{m}\nabl......\delta\rho_{\sigma_\alpha}} \Big)\nabla_{p}f +I_{\rm UU}(f) }\quad. $\egroup

    The collision term \bgroup\color{red}$ {\color{red} I_{\rm UU}}$\egroup is a non-linear functional of the distribution function \bgroup\color{red}$ {\color{red} f}$\egroup. It contains terms up to third power in \bgroup\color{red}$ {\color{red} f}$\egroup. It is constructed from local and instantaneous collisions which obey energy conservation, momentum conservation, and the Pauli principle [273]. The resulting equation is called the Vlasov-Uehling-Uhlenbeck approach (VUU).

    Back to top
    \ No newline at end of file