168 lines
5.9 KiB
HTML
168 lines
5.9 KiB
HTML
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||
|
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
|
<head>
|
||
|
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
|
||
|
<title>Theory of Cluster Dynamics</title>
|
||
|
<link href="../style.css" rel="stylesheet" type="text/css" />
|
||
|
</head>
|
||
|
|
||
|
<body>
|
||
|
<div id="container">
|
||
|
<div id="header">
|
||
|
<div id="menu">
|
||
|
<div id="navMenu">
|
||
|
|
||
|
<ul>
|
||
|
<li style="margin-top:1px;border-top:1px solid #B0C4DE; "><a href="../index.html">Home</a></li>
|
||
|
<li><a href="../intro.html">Introductory Overview</a></li>
|
||
|
<li><a href="../research.html">Scientific Information</a></li>
|
||
|
<li><a href="../staff.html">Staff</a></li>
|
||
|
<li><a href="../publications.html">Publications/Talks</a></li>
|
||
|
<li><a href="../contact.html">Contact</a></li>
|
||
|
|
||
|
</ul>
|
||
|
</div>
|
||
|
</div>
|
||
|
<div id="image">
|
||
|
<p><font color="white" size="6"><b>Theory of Cluster Dynamics</b></font><font size="5"><br>
|
||
|
</font><font size="6">
|
||
|
</font><font size="5">The Toulouse - Erlangen Collaboration</font></p>
|
||
|
|
||
|
</div>
|
||
|
|
||
|
<a name="oben">
|
||
|
<div id="content">
|
||
|
|
||
|
<div style="margin:15px;width:770px;border:1px solid gray;float:left;font-size:10px;">
|
||
|
<div style="width:220px;float:left;text-align:center;font-weight:900;font-size:12px;">
|
||
|
<a href="detail1.html">1. Analysis of cluster dynamics</a>
|
||
|
</div>
|
||
|
<div style="width:220px;float:left;text-align:center;">
|
||
|
<a href="detail2.html"> 2. Clusters in external fields</a>
|
||
|
</div>
|
||
|
<div style="width:220px;float:left;text-align:center;">
|
||
|
<a href="../tddft-md/formal.html"> 3. Theoretical developments </a>
|
||
|
</div>
|
||
|
|
||
|
</div>
|
||
|
</a>
|
||
|
|
||
|
|
||
|
<div id="WideContent">
|
||
|
<div id="contentBoxWide">
|
||
|
<div id="contentBoxHeader">
|
||
|
<p> Analysis of cluster dynamics</p>
|
||
|
</div>
|
||
|
<div id="contentBoxContent">
|
||
|
|
||
|
<!-- START CONTENT HERE -->
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
<p>
|
||
|
<img src="figs/na8p_mie.gif" width="250" align="right">
|
||
|
<br><br>
|
||
|
The basic dynamical property of a metal cluster is the optical
|
||
|
absorption spectrum which has a pronounced collection of strength in
|
||
|
the region of the Mie plasmon. TDLDA driven with small amplitude
|
||
|
excitations allows to explore the optical response [<a href="../literatur.html#own1155">9</a>].
|
||
|
The figure beneath shows results for Na<sub>8</sub><sup>+</sup> as
|
||
|
example (taken from [<a href="../literatur.html#own1315"><font color="red">???</font></a>]) in comparison
|
||
|
to experiment (upper panel) and CI calculations (<font color="red"><b>???</b></font>)(second from above).
|
||
|
The overall position of the peak strength is nicely reproduced by all
|
||
|
methods, even by the semiclassical approach. CI produces the most
|
||
|
detailed spectrum. The green bars show the discrete spectrum as it
|
||
|
emerges from the CI calculation, and the red curve results from Lorentzian
|
||
|
smoothing which simulates to some extend the finite experimental
|
||
|
resolution and thermal fluctuations. The enormous number of spectral
|
||
|
lines (green) is due to electronic correlations which are absent in
|
||
|
TDLDA. Nonetheless, the unavoidable smoothing overrules these details
|
||
|
and makes TDLDA spectra competitive. It is noteworthy that also the
|
||
|
semiclassical approximation (Vlasov-LDA) performs surprisingly well.
|
||
|
This provides a good starting point for the subsequent applications
|
||
|
in more energetic situations.
|
||
|
<br>
|
||
|
</p>
|
||
|
|
||
|
|
||
|
|
||
|
<p>
|
||
|
<br><br><br><br><br>
|
||
|
<img src="figs/na_vgl_small.gif" width="400" align="left">
|
||
|
<br><br>
|
||
|
Laser induced direct photo-emission of electrons allows to conclude on
|
||
|
the clusters single-electron states by measuring the photo-electron
|
||
|
spectra (PES). TDLDA with appropriate self-interaction correction
|
||
|
(SIC) [<a href="../literatur.html#own1252">277</a>] allows to simulate that
|
||
|
process in detail [<a href="../literatur.html#own1227">251</a>] . The figure to
|
||
|
the left shows two examples for two clusters which are nearly
|
||
|
spherical (taken from [<a href="../literatur.html#own1285">304</a>]). The arrows
|
||
|
indicate the level classification according to principal quantum
|
||
|
number and angular momentum. The PES depend, of course, on the
|
||
|
direction of emission (checked here are the case where the cluster
|
||
|
axis is ``perpendicular'' or ``parallel'' to the laser
|
||
|
polarization). Experiments take an average over all direction.
|
||
|
The summed theoretical PES agree fairly well with the data.
|
||
|
|
||
|
</p>
|
||
|
|
||
|
|
||
|
|
||
|
<p>
|
||
|
<br><br><br><br>
|
||
|
<img src="figs/na41p+3_comb.gif" width="350" align="right">
|
||
|
<br><br><br><br><br>
|
||
|
Pump and probe (P&P) techniques are an extremely powerful tool for
|
||
|
time-resolved analysis. The complexity of clusters allows an
|
||
|
enormous manifold of P&P scenarios. The figure to the right sketches
|
||
|
a simple and robust scenario for a nearly spherical cluster, actually
|
||
|
Na<sub>41</sub><sup>+</sup> [<a href="../literatur.html#own1246">290</a>]. The idea is to map the
|
||
|
radius vibrations of the cluster by an off-resonant laser pulse. The
|
||
|
pump pulse ionizes the Na<sub>41</sub><sup>+</sup> within 50 fs by three more charge
|
||
|
units, see second panel from top for dipole response (black line) and first
|
||
|
panel for ionization. The generated Coulomb pressure drives
|
||
|
oscillations of the radius <i>R<sub>ion</sub></i>, shown in the lowest panel.
|
||
|
</br></br>
|
||
|
|
||
|
The Mie plasmon
|
||
|
frequency depends on the cluster extension as w<sub>Mie</sub>~
|
||
|
R<sup>-3/2</sup> and oscillates with opposite phase, see third panel. Thus
|
||
|
the changing distance to the off-resonant laser frequency (green
|
||
|
horizontal line) modulates the dipole response to probe pulses
|
||
|
accordingly (second panel) which, in turn, yields changing ionization
|
||
|
through the probe pulse as function of delay time. The final
|
||
|
ionization (upper panel) becomes then a direct map of the underlying
|
||
|
breathing oscillations of the cluster.
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
</p>
|
||
|
<center>
|
||
|
<table width="70%">
|
||
|
<tr>
|
||
|
<td align="right">
|
||
|
<a href="#top">Back to top </a>
|
||
|
</td>
|
||
|
</tr>
|
||
|
</table>
|
||
|
</center>
|
||
|
|
||
|
|
||
|
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
|
||
|
|
||
|
|
||
|
<div id="footer">
|
||
|
<p></p>
|
||
|
</div>
|
||
|
</div>
|
||
|
</body>
|
||
|
</html>
|