154 lines
8.2 KiB
HTML
154 lines
8.2 KiB
HTML
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
|
||
|
<html xmlns="http://www.w3.org/1999/xhtml">
|
||
|
<head>
|
||
|
<meta http-equiv="content-type" content="application/xhtml+xml; charset=iso-8859-1" />
|
||
|
<title>Theory of Cluster Dynamics</title>
|
||
|
<link href="../style.css" rel="stylesheet" type="text/css" />
|
||
|
</head>
|
||
|
<body>
|
||
|
<div id="container">
|
||
|
<div id="header">
|
||
|
<div id="menu">
|
||
|
<div id="navMenu">
|
||
|
<ul>
|
||
|
<li style="margin-top:1px;border-top:1px solid #B0C4DE; "><a href="../index.html">Home</a></li>
|
||
|
<li><a href="../intro.html">Introductory Overview</a></li>
|
||
|
<li><a href="../research.html">Scientific Information</a></li>
|
||
|
<li><a href="../staff.html">Staff</a></li>
|
||
|
<li><a href="../publications.html">Publications/Talks</a></li>
|
||
|
<li><a href="../contact.html">Contact</a></li>
|
||
|
</ul>
|
||
|
</div>
|
||
|
</div>
|
||
|
<div id="image">
|
||
|
<p><font size="6" color="white"><b>Theory of Cluster Dynamics</b></font><font
|
||
|
size="5"><br />
|
||
|
</font><font size="6"> </font><font size="5">The Toulouse -
|
||
|
Erlangen Collaboration</font></p>
|
||
|
</div>
|
||
|
<a name="oben"> </a>
|
||
|
<div id="content"><a name="oben"> </a>
|
||
|
<div style="margin:15px;width:770px;border:1px solid gray;float:left;font-size:10px;"><a
|
||
|
name="oben">
|
||
|
</a>
|
||
|
<div style="width:180px;float:left;text-align:center;font-size:10px"><a
|
||
|
name="oben">
|
||
|
</a><a href="../tddft-md/formal.html">1. Theoretical developments </a> </div>
|
||
|
<div style="width:200px;float:left;text-align:center;font-size:12px;">
|
||
|
<a href="detail1.html"> 2. Analysis of cluster
|
||
|
dynamics </a> </div>
|
||
|
<div style="width:200px;float:left;text-align:center;font-weight:900;font-size:10px;">
|
||
|
<a href="detail2.html"> 3. Clusters in strong external
|
||
|
fields </a> </div>
|
||
|
<div style="width:180px;float:left;text-align:center;font-weight:900;font-size:10px;">
|
||
|
<a href="../tddft-md/detailQMMM.html"> 4. Embedded clusters </a> </div>
|
||
|
</div>
|
||
|
<div id="WideContent">
|
||
|
<div id="contentBoxWide">
|
||
|
<div id="contentBoxHeader">
|
||
|
<p> Analysis of cluster dynamics</p>
|
||
|
</div>
|
||
|
<div id="contentBoxContent">
|
||
|
<!-- START CONTENT HERE -->
|
||
|
<p> <img src="figs/na8p_mie.gif" width="250" align="right" /> <br />
|
||
|
<br />
|
||
|
The basic dynamical property of a metal cluster is the optical
|
||
|
absorption spectrum which has a pronounced collection of
|
||
|
strength in the region of the Mie plasmon. TDLDA driven with
|
||
|
small amplitude excitations allows to explore the optical
|
||
|
response [<a href="../literatur.html#own1155">9</a>]. The
|
||
|
figure beneath shows results for Na<sub>8</sub><sup>+</sup> as
|
||
|
example (taken from [<a href="../literatur.html#own1315"><font
|
||
|
color="red">???</font></a>])
|
||
|
in comparison to experiment (upper panel) and CI calculations
|
||
|
(<font color="red"><b>???</b></font>)(second from above). The
|
||
|
overall position of the peak strength is nicely reproduced by
|
||
|
all methods, even by the semiclassical approach. CI produces
|
||
|
the most detailed spectrum. The green bars show the discrete
|
||
|
spectrum as it emerges from the CI calculation, and the red
|
||
|
curve results from Lorentzian smoothing which simulates to
|
||
|
some extend the finite experimental resolution and thermal
|
||
|
fluctuations. The enormous number of spectral lines (green) is
|
||
|
due to electronic correlations which are absent in TDLDA.
|
||
|
Nonetheless, the unavoidable smoothing overrules these details
|
||
|
and makes TDLDA spectra competitive. It is noteworthy that
|
||
|
also the semiclassical approximation (Vlasov-LDA) performs
|
||
|
surprisingly well. This provides a good starting point for the
|
||
|
subsequent applications in more energetic situations. <br />
|
||
|
</p>
|
||
|
<p> <br />
|
||
|
<br />
|
||
|
<br />
|
||
|
<br />
|
||
|
<br />
|
||
|
<img src="figs/na_vgl_small.gif" width="400" align="left" /> <br />
|
||
|
<br />
|
||
|
Laser induced direct photo-emission of electrons allows to
|
||
|
conclude on the clusters single-electron states by measuring
|
||
|
the photo-electron spectra (PES). TDLDA with appropriate
|
||
|
self-interaction correction (SIC) [<a href="../literatur.html#own1252">277</a>]
|
||
|
allows to simulate that process in detail [<a href="../literatur.html#own1227">251</a>]
|
||
|
. The figure to the left shows two examples for two clusters
|
||
|
which are nearly spherical (taken from [<a href="../literatur.html#own1285">304</a>]).
|
||
|
The arrows indicate the level classification according to
|
||
|
principal quantum number and angular momentum. The PES depend,
|
||
|
of course, on the direction of emission (checked here are the
|
||
|
case where the cluster axis is ``perpendicular'' or
|
||
|
``parallel'' to the laser polarization). Experiments take an
|
||
|
average over all direction. The summed theoretical PES agree
|
||
|
fairly well with the data. </p>
|
||
|
<p> <br />
|
||
|
<br />
|
||
|
<br />
|
||
|
<br />
|
||
|
<img src="figs/na41p+3_comb.gif" width="350" align="right" />
|
||
|
<br />
|
||
|
<br />
|
||
|
<br />
|
||
|
<br />
|
||
|
<br />
|
||
|
Pump and probe (P&P) techniques are an extremely powerful
|
||
|
tool for time-resolved analysis. The complexity of clusters
|
||
|
allows an enormous manifold of P&P scenarios. The figure
|
||
|
to the right sketches a simple and robust scenario for a
|
||
|
nearly spherical cluster, actually Na<sub>41</sub><sup>+</sup>
|
||
|
[<a href="../literatur.html#own1246">290</a>]. The idea is to
|
||
|
map the radius vibrations of the cluster by an off-resonant
|
||
|
laser pulse. The pump pulse ionizes the Na<sub>41</sub><sup>+</sup>
|
||
|
within 50 fs by three more charge units, see second panel from
|
||
|
top for dipole response (black line) and first panel for
|
||
|
ionization. The generated Coulomb pressure drives oscillations
|
||
|
of the radius <i>R<sub>ion</sub></i>, shown in the lowest
|
||
|
panel. <br />
|
||
|
<br />
|
||
|
The Mie plasmon frequency depends on the cluster extension as
|
||
|
w<sub>Mie</sub>~ R<sup>-3/2</sup> and oscillates with opposite
|
||
|
phase, see third panel. Thus the changing distance to the
|
||
|
off-resonant laser frequency (green horizontal line) modulates
|
||
|
the dipole response to probe pulses accordingly (second panel)
|
||
|
which, in turn, yields changing ionization through the probe
|
||
|
pulse as function of delay time. The final ionization (upper
|
||
|
panel) becomes then a direct map of the underlying breathing
|
||
|
oscillations of the cluster. </p>
|
||
|
<center>
|
||
|
<table width="70%">
|
||
|
<tbody>
|
||
|
<tr>
|
||
|
<td align="right"> <a href="#top">Back to top </a> </td>
|
||
|
</tr>
|
||
|
</tbody>
|
||
|
</table>
|
||
|
</center>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
<div id="footer">
|
||
|
<p></p>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
|
||
|
</body>
|
||
|
</html>
|